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T-duality: Motivation 2/39

String theories on backgrounds with U(1)-isometries:
exchange of winding/momentum modes ⇒ a T-dual partner
This duality qualitatively separates strings from particles
Many reasons for studying T-duality

Better understanding of strings
Higher bundles/gerbes with connection
Non-geometric backgrounds
Mathematics: relation to Fourier–Mukai transform
. . .

But: T-duality begs to be studied in non-trivial topologies
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Approximations in the following 3/39

String theories on backgrounds with U(1)-isometries:
Low-energy limit: corresponding supergravity contains B-field:
⇒ connective structure on a gerbe

Geometric string background:
A (Riemannian) manifold X
A principal/affine torus bundle π : P → X (with connection)
An abelian gerbe (with connection) G on the total space of P

Ignore dynamics, i.e. no equations of motion imposed
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Topological T-duality 4/39

Geometric string background:
A topological manifold X
A principal/affine torus bundle π : P → X

An abelian gerbe G on the total space of P

Topological T-duality from exactness of the Gysin sequence

For example, for principal circle bundle:
. . . −→ H3(X,Z)

π∗−→ H3(P,Z)
π∗−→ H2(X,Z)

F ∪−−→ H4(X,Z) −→ . . .

Gerbe over P : 3-form H ∈ H3(P,Z)

Fiber integration π∗H = F̂ ∈ H2(X,Z) with F ∪ F̂ = 0

⇒ There is Ĥ ∈ H3(P̂ ,Z) with π∗Ĥ = F .
Top. T-duality: (F,H) = (π∗Ĥ,H) ←→ (F̂ , Ĥ) = (π∗H, Ĥ)
Note: possibility of topology change!

Bouwknegt, Evslin, Hannabuss, Mathai (2004)
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Topological T-duality, geometrically 5/39

T-correspondence:

GC = p̌∗Ǧ ⊗ p̂∗Ĝ−1 ∼= I

P̌ ×X P̂

Ǧ P̌ P̂ Ĝ

X

p̌ p̂

π̌ π̂

Bunke, Rumpf, Schick (2005, 2006)

Principal 2-bundles (without connections) over X:

PC

P̌ P̂

p̌ p̂

Nikolaus, Waldorf (2018)
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Two open problems 6/39

I. T-duality can lead to non-geometric backgrounds:
F 3: H has no legs along fiber

T-duality: identity
F 2: H has 1 leg along fiber

T-duality → geometric string background
F 1: H has 2 legs along fiber

T-duality → Q-space, (e.g. T-folds) locally geometric
F 0: H has all legs along fiber

T-duality → R-space, non-geometric

Nikolaus/Waldorf cover F 2 ↔ F 2 and F 2 ↔ F 1 T-dualities
What about the general case?

II. Differential refinement of this picture

Why is this interesting/hard?
I. need to use suitable groupoids and augmented groupoids
II. connections on principal 2-bundles often require adjustment
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Outline 7/39

Categorified parallel transport
Adjusted connections on principal 2-bundles
F k, k ≥ 2: Geometric T-duality with principal 2-bundles
Explicit example throughout: Nilmanifold
The T-duality group from Kaluza–Klein reduction
Non-geometric T-dualities: Q-spaces and R-spaces
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Principal 2-bundles or Non-Abelian Gerbes

with Adjusted Connections
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Parallel transport 9/39

Principal bundles define parallel transport.

Parallel transport with gauge group G :
Assignment γ 7→ g for path γ and group elt. g ∈ G.
Gluing paths together leads to multiplication of the group elts.
holonomy functor for points: hol(γ) = P exp(

∫
γ A) ∈ G

A: gauge potential, γ: surface, P : path ordering
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Higher parallel transport 10/39

Higher principal bundles define higher parallel transport.

Parallel transport with gauge group G?
Assignment σ 7→ g for surface σ and group elt. g ∈ G?
Gluing surfaces together leads to multiplication of group elts.?
holonomy functor for surfaces: hol(σ) = P exp(

∫
σ B) ∈ G?

B: gauge potential, σ: surface, P : does not exist:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

Consistency of parallel transport requires:

(g′1g
′
2)(g1g2) = (g′1g1)(g′2g2)

This renders group G abelian. Eckmann and Hilton, 1962
Way out: higher categories, categorification:

(g′1 ⊗ g′2) ◦ (g1 ⊗ g2) = (g′1 ◦ g1)⊗ (g′2 ◦ g2) .
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Categorification 11/39

A mathematical structure (“Bourbaki-style”) consists of

• Sets • Structure Functions • Structure Equations

“Categorification”:

Sets→ Categories
Structure Functions→ Structure Functors
Structure Equations→ Structure Isomorphisms

Example: Group → 2-Group
Set G → Category G

product, identity (1 : ∗ → G), inverse → Functors
a(bc) = (ab)c → Associator a : a⊗ (b⊗ c)⇒ (a⊗ b)⊗ c
1a = a1 = a → Unitors la : a⊗ 1⇒ a, ra : 1⊗ a⇒ a

aa−1 = a−1a = 1 → weak inv. inv(x)⊗ x⇒ 1⇐ x⊗ inv(x)

Note: Process not unique, variants: weak/strict/...
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Categorification: Higher dimensional algebra 12/39

Higher groups: we are doing higher dimensional algebra.

In a group, we can multiply ordered elements in one dimension:

a · b · . . . · d

In a 2-group, we can multiply “vertically” and “horizontally”,
i.e. in two dimensions:

•
��
oo
^^

g1��

g′1��

•�� oo
]]

g2��

g′2��

...
In an n-group, we can multiply in n dimensions
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Example: The Lie 2-group TDn 13/39

Lie 2-group:
Strict monoidal category
Vertical product: ◦, composition of morphisms
Horizontal product: ⊗

TDn:

R
2n × Z2n × U(1) R

2n

ξ ξ −m1 ξ −m1 −m2

(ξ,m1,φ1) (ξ−m1,m2,φ2)

(ξ,m1+m2,φ1+φ2)

idξ := (ξ, 0, 0) , (ξ,m, φ)−1 := (ξ −m,−m,−φ)

(ξ1,m1, φ1)⊗ (ξ2,m2, φ2) := (ξ1 + ξ2,m1 +m2, φ1 + φ2 − 〈ξ1,m2〉)
inv(ξ,m, φ) := (−ξ,−m,−φ− 〈ξ,m〉)
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Example: The Lie 2-group TDn 14/39

Lie 2-groups are equivalently crossed modules of Lie groups:
Pair of Lie groups (G,H)

Group homomorphism t : H→ G

Action G y H by automorphisms.

TDn:
TDn :=

(
Z

2n × U(1)
t−→ R

2n
)

t(m,φ) := m

ξ B (m,φ) := (m,φ− 〈ξ,m〉)
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Principal 2-bundles, topologically 15/39

Essentially, all definitions of principal bundles have higher version.

Here: Čech cocycle description subordinate to a cover.
Surjective submersion σ : Y � X, e.g. Y = taUa
Čech groupoid:

Č (σ) : Y ×X Y ⇒ Y , (y1, y2) ◦ (y2, y3) = (y1, y3) .

Principal G-bundle:
Transition functions are functor g : Č (σ)→ (G⇒ ∗)

Y ×X Y
g

//

�� ��

G

�� ��
Y

∗ // ∗

g(y1, y2)g(y2, y3) = g(y1, y3)

Equivalences/bundle isomorphisms: natural isomorphisms.
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Principal 2-bundles, topologically 16/39

Principal G-bundle:
Trans. fncs.: weak 2-functors g : Č (σ)→ (Gn H⇒ G⇒ ∗)

Y ×X Y
(g,h)

//

�� ��

Gn H

�� ��

Y ×X Y
g

//

�� ��

G

�� ��
Y

∗ // ∗

Special case: H = U(1), G = ∗: abelian gerbes.
Similarly: groupoid bundles, 2-groupoid bundles, . . . ,
n-groupoid bundles.
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A bit harder: Connections 17/39

Connections on principal 2-bundles: work a bit more...
Breen, Messing (2005), Aschieri, Cantini, Jurčo (2005)

Data obtained for 2-group GnH⇒ G and Lie 2-algebra gn h⇒ g:

h ∈ Ω0(Y [3],H) Λ ∈ Ω1(Y [2], h) B ∈ Ω2(Y, h) δ ∈ Ω2(Y [2], h)

g ∈ Ω0(Y [2],G) A ∈ Ω1(Y, g)

Note that δ sticks out unnaturally.
It was dropped in most later work (Baez, Schreiber, ...)
Price to pay: part of curvature must vanish
Otherwise, problems with composition of gauge
transformations
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Principal 2-Bundles 18/39

Object Principal G-bundle Principal (H t−→ G)-bundle

Cochains (gab) valued in G (gab) valued in G, (habc) valued in H

Cocycle gabgbc = gac t(habc)gabgbc = gac
hacdhabc = habd(gab B hbcd)

Coboundary gag
′
ab = gabgb gag

′
ab = t(hab)gabgb

hachabc = (ga B h′abc)hab(gab B hbc)

gauge pot. Aa ∈ Ω1(Ua)⊗ g Aa ∈ Ω1(Ua)⊗ g, Ba ∈ Ω2(Ua)⊗ h

Curvature Fa = dAa + 1
2 [Aa, Aa] Fa = dAa + 1

2 [Aa, Aa]− t(Ba)
!

= 0
Ha = dBa +Aa B Ba

Gauge trafos Ãa := g−1
a Aaga + g−1

a dga Ãa := g−1
a Aaga + g−1

a dga + t(Λa)

B̃a := g−1
a B Ba + Ãa B Λa + dΛa − Λa ∧ Λa

Remarks:
A principal (1

t−→ G)-bundle is a principal G-bundle.

A principal (U(1)
t−→ 1) = BU(1)-bundle is an abelian gerbe.
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Why should the fake curvature(s) vanish? 19/39

F := dA+ 1
2 [A,A] + t(B)

!
= 0

Without this condition:
Closure of gauge transformations generically requires F = 0

Composition of cocycles generically requires F = 0

Higher parallel transport is not reparameterization invariant

6d Self-duality equation H = ?H is not gauge-covariant:

H → H̃ = g B H −F B Λ

With this condition:
Principal (1

t−→ G)-bundle is flat principal G-bundle.
Higher connections are locally abelian!

Gastel (2019), CS, Schmidt (2020)
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Solution: Adjustment 20/39

Many (not all!) higher gauge groups come with

Adjustment of higher group G:
CS, Schmidt (2020), Rist, CS, Wolf (2022)

Additional map κ : G × Lie(G)→ Lie(G) + condition
Necessary for consistent definition of invariant polynomials.
From Alternator (⇒ EL∞-algebras, Borsten, Kim, CS (2021))

For connections on principal G-bundles:
specifies δ ∈ Ω2(Y [2], h) in terms of A and F
Adjustment of curvature/cocycle/coboundary relations
Can drop fake flatness condition
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Physics example: Heterotic supergravity 21/39

Archetypal example: string Lie 2-algebra
string(n) = R[1]→ spin(n)

µ2(x1, x2) = [x1, x2] , µ3(x1, x2, x3) = (x1, [x2, x3])

Gauge potentials:

(A,B) ∈ Ω1(U)⊗ spin(n) ⊕ Ω2(U)

Curvatures:
F := dA+ 1

2 [A,A]

H := dB − 1
3!(A, [A,A]) + (A,F )

= dB + (A,dA) + 1
3(A, [A,A])︸ ︷︷ ︸

cs(A)

Bianchi identities:

dF + [A,F ] = 0 , dH − (F, F ) = 0
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Geometric T-duality
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Geometric T-duality: General Picture 23/39

PC

P̌ P̂

p̌ p̂

Nikolaus/Waldorf: Topological part:
Gerbe and circle fibration combined into 2-bundles P̌ and P̂
P̌ and P̂ are principal TBF2

n -bundles
PC is a principal TDn-bundle
p̌ is a projection induced by strict morphism φ̂ : TDn → TBF2

n

p̂ induced by φ̌ = φ̂ ◦ φflip, flip morphism φflip : TDn → TDn
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Geometric T-duality: General Picture 24/39

PC

P̌ P̂

p̌ p̂

Nikolaus/Waldorf: Topological part:
P̌ and P̂ are principal TBF2

n -bundles
PC is a principal TDn-bundle

Differential refinement: (i.e. B-field+metric) Kim, CS (2022)
TBF2

n does not come with adjustment, but
TDn comes with very natural adjustment map
Have topological and full connection data on PC

Can reconstruct gerbe and bundle data on P̌ and P̂

Reproduces Buscher rules Waldorf (2022)
Generalization to affine torus bundles: use GL(n,Z) n TDn
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Example: 3d Nilmanifolds 25/39

Geometry of string background Ǧ` → Nk:
Principal circle bundle over T 2 with c1 = k

Subordinate to R2 → T 2 and with U(1) ∼= R/Z

(x, y, z) ∼ (x, y + 1, z) ∼ (x, y, z + 1) ∼ (x+ 1, y, z − ky)

Local connection form: A(x, y) = kx dy ∈ Ω1(R2)

Kaluza–Klein metric: g(x, y, z) = dx2 + dy2 + (dz + kx dy)2

Gerbes on Nk characterized by element of H3(Nk,Z) ∼= Z

T-duality:
(Ǧ` → Nk) ←→ (Ĝk → N`)
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Explicit T-duality example with principal 2-bundles 26/39

Kim, CS (2022)PC

P̌ P̂

p̌ p̂

Lie 2-group:
TD1 :=

(
Z

2 × U(1)
t−→ R

2
)

Topological cocycle data:

g =

(
ξ̂

ξ̌

)
,

ξ̂(x, y;x′, y′) = `(x′ − x)y ,

ξ̌(x, y;x′, y′) = k(x′ − x)y ,

h =

m̂m̌
φ

 ,

m̂(x, y;x′, y′;x′′, y′′) = −`(x′′ − x′)(y′ − y)

m̌(x, y;x′, y′;x′′, y′′) = −k(x′′ − x′)(y′ − y)

φ = 1
2k`
(
y′(xx′′ − xx′ − x′x′′)− (x′′ − x′)(y′2 − y2)x

)
Cocycle data of differential refinement:

A =

(
Ǎ

Â

)
=

(
kx dy
`x dy

)
, B = 0 , Λ = 1

2k`(xx
′ dy + (xy + x′y′ + y2(x′ − x)) dx)

Can reconstruct both string backgrounds fully.
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The T-duality group from Kaluza–Klein Reduction
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The group TDn from Kaluza–Klein reduction 28/39

Observation:
T-duality is intimately linked to Kaluza–Klein reduction:

Gysin sequence contains fiber integration
Metric on total space given by Kaluza–Klein metric
Literature: e.g. Berman (2019), Alfonsi (2019), ...

Geometric objects from maps into classifying spaces C.
Note: currying C0(X × Tn, C) ∼= C0(X,C0(Tn, C))
Non-trivial fibrations: cyclic torus space: C0(Tn, C)//U(1)n

cf. Fiorenza, Sati, Schreiber (2016a,2016b)
Kaluza–Klein reduction:

Principal G-bundle over circle fibration P → X
Classifying space BG
Cyclic loop space LBG//U(1) ∼= BH
Work with principal H-bundles over X
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The 2-group TDn from Kaluza–Klein reduction 29/39

Abstract nonsense: KK-reduction along circle fibers:
BBU(1) → LBBU(1)//U(1) ∼= B(BU(1)× U(1)× U(1))

BU(1) → LBU(1)//U(1) ∼= BU(1)× U(1)× BU(1)

TD1 from KK-reduction of gerbe on circle bundle
Gerbe: C0(P, C) with C = BBU(1) ∼ (U(1)⇒ ∗⇒ ∗)
Replace U(1) with Z→ R: TD1 :=

(
U(1)× Z2 t−→ R

2
)

TD2 from KK-reduction of principal TD1-bundle on circle bundle
Principal 2-bundle: C0(P, C) with C = BTD1

Replace U(1) with Z→ R: TD2 :=
(
U(1)× Z4 t−→ R

4
)

Here, we dropped parts, we actually get a 2-groupoid:
TD2

∼= BBU(1)× BU(1)×4 × U(1)×4

Clear that g,B dim reduced on T 2 yield four scalar modes.
Iterate: TDn :=

(
U(1)× Z2n t−→ R

2n
)
and TDn.
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Automorphisms of TDn 30/39

Abstract nonsense:
Natural definition of morphism of 2-groups
Automorphisms of 2-group form naturally a 2-group
2-group action G y H : morphism G → Aut(H )

Automorphisms of the 2-group TDn:
Can be computed to be weak (unital) Lie 2-group

GO(n, n;Z) :=
(

GO(n, n;Z)× Z2n GO(n, n;Z)
)

see also Waldorf (2022)
While GO(n, n;Z) does not act on TDn, GO(n, n;Z) does.
Recover T-duality group for affine torus bundles
Explicit: geometric subgroup, B- and β-trafos, T-dualities
as endo-2-functors on TDn

⇒ arrange everything based on GO(n, n;Z)
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Non-geometric T-dualities: Q-spaces and R-spaces
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The 2-groupoid TDn 32/39

Two T-dualities yield scalars from metric and 2-form.
Scalars live on the Narain moduli space for affine torus bundles:
GMn = GO(n, n;Z) \ O(n, n;R) /

(
O(n;R)× O(n;R)

)
=: GO(n, n;Z) \ Qn

Note: Qn ∼= R
n2

is a nice space
Resolve into action groupoid:

GO(n, n;Z) nQn ⇒ Qn

Extend to GO(n, n;Z)-action (GO(n, n;Z) ∼= Aut(TDn))
Place TDn-fiber over every point in Qn
Include action of GO(n, n;Z) on TDn

The result is the Lie 2-groupoid TDn
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T-duality as TDn-bundles 33/39

A non-geometric T-duality is simply a TDn-bundle.

Remarks:
The T-duality group GO(n, n;Z) ⊃ GO(n, n;Z) is gauged!
Explicitly visible: GO(n, n;Z)-gluing of local data
Matches topological discussion in Nikolaus, Waldorf (2018)
Differential refinement imposes restriction on top. cocycles
This describes all T-dualities between pairs of T-folds
Concrete conditions for “half-geometric” T-dualities
Concrete cocycles of the T-fold in the nilmanifold example

To describe Q-spaces/T-folds:
(can) use higher instead of noncommutative geometry.
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Example: T-folds 34/39

Consider again the nilmanifold example, this time X = S1.
Gauge groupoid TD2

General cocycle data:
(g, z, ξ,m, φ, q) ∈ C∞(Y [3],GO(2, 2;Z)× Z4 ×R4 × Z4 × U(1)×Q2)

(g, ξ, q) ∈ C∞(Y [2],GO(2, 2;Z)×R4 ×Q2)

q ∈ C∞(Y,Q2)

Topology: all data over Y [3] are trivial.
Topology: no Tn-bundles over S1: ξ is trivial
Remaining: q : Y → Q2

∼= R
4, g : Y [2] → GO(2, 2;Z) s.t.:

q(y1) = g(y1, y2)q(y2) , g(y1, y2)g(y2, y3) = g(y1, y3)
R

4: scalar modes gyy, gyz, gzz, Byz
Well-known T-fold is the special case where

gx+1,x =


1 0 0 0
0 1 0 0
0 ` 1 0
−` 0 0 1


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What about R-spaces? 35/39

T-folds/Q-spaces relatively harmless, as locally geometric
R-spaces are not even locally geometric
But perhaps higher description still works?

Note:
One T-duality direction: B-field → 2-, 1-forms
⇒ Lie 2-group TDn-bundles with connection
Two T-duality directions: B-field → 2-, 1-, 0-forms
⇒ Lie 2-groupoid TDn-bundles with connection
Three T-duality directions: B-field → 2-, 1-, 0-, “(-1)-forms”
(Note: (-1)-forms have global “curvature” 0-forms)
⇒ Augmented Lie 2-groupoid TDaug

n -bundles with connection
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Augmented groupoid bundles 36/39

Need to switch to simplicial picture:
(Higher) groupoids are Kan simplicial manifolds
Higher groupoid 1-morphisms are simplicial maps
Higher groupoid 2-morphisms are simplicial homotopies
“quasi-groupoids” or “(∞, 1)-groupoids”

Augmented G -groupoid bundles subordinate to σ : Y � X:

Y ×X Y ×X Y
g2

//

�� �� ��

G2

�� �� ��

Y ×X Y
g1

//

�� ��

G1

�� ��

Y
g0

//

σ
��

G0

��

X
g−1

// G−1
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T-duality as TDaug
n -bundles 37/39

Construction of TDaug
n :

Augmentation by suitable space of R-fluxes
Determined by finite version of tensor hierarchy
Finite embedding tensor R2n → GO(n, n;Z) ⊂ GO(n, n;Z)

plus some standard consistency conditions
Beyond this, augmentation fairly trivial

Remarks on T-duality with TDaug
n -bundles:

Explicit examples, e.g. from nilmanifolds
Yields consistency conditions between Q- and R-fluxes
All previously discussed cases included
All previously discussed also for affine U(1)-bundles

To describe R-spaces:
(can) use higher instead of nonassociative geometry.
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Summary 38/39

What has been done:
Top. T-duality can be described using principal 2-bundles
Differential refinement with adjusted curvatures
Explicit description of geometric T-duality with nilmanifolds
T-duality group is really a 2-group derived from KK-reduction
Extended to Q-spaces or T-folds using 2-groupoid bundles
Extended to R-spaces using augmented 2-groupoid bundles

Future work:
Link some mathematical results to physical expectations
Link to pre-NQ-manifold pictures, DFT, and similar
Non-abelian T-duality?
U-duality
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Thank You!
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