T-duality with categorified principal bundles

Christian Saemann Maxwell Institute and School of Mathematical and Computer Sciences Heriot–Watt University, Edinburgh

U Hertfordshire, 7.9.2022

Based on joint work with Hyungrok Kim: arXiv:2204.01783

- String theories on backgrounds with U(1)-isometries: exchange of winding/momentum modes \Rightarrow a T-dual partner
- This duality qualitatively separates strings from particles
- Many reasons for studying T-duality
 - Better understanding of strings
 - Higher bundles/gerbes with connection
 - Non-geometric backgrounds
 - Mathematics: relation to Fourier–Mukai transform
 - o ...
- But: T-duality begs to be studied in non-trivial topologies

- String theories on backgrounds with U(1)-isometries:
- Low-energy limit: corresponding supergravity contains *B*-field:
 - ⇒ connective structure on a gerbe

Geometric string background:

- \bullet A (Riemannian) manifold X
- A principal/affine torus bundle $\pi: P \to X$ (with connection)
- ullet An abelian gerbe (with connection) ${\mathscr G}$ on the total space of P

Ignore dynamics, i.e. no equations of motion imposed

Geometric string background:

- ullet A topological manifold X
- A principal/affine torus bundle $\pi: P \to X$
- ullet An abelian gerbe $\mathscr G$ on the total space of P

Topological T-duality from exactness of the Gysin sequence

For example, for principal circle bundle:

$$\dots \to \mathrm{H}^3(X,\mathbb{Z}) \xrightarrow{\pi^*} \mathrm{H}^3(P,\mathbb{Z}) \xrightarrow{\pi_*} \mathrm{H}^2(X,\mathbb{Z}) \xrightarrow{F \cup} \mathrm{H}^4(X,\mathbb{Z}) \to \dots$$

- Gerbe over P: 3-form $H \in \mathrm{H}^3(P,\mathbb{Z})$
- Fiber integration $\pi_*H=\hat{F}\in \mathrm{H}^2(X,\mathbb{Z})$ with $F\cup\hat{F}=0$
- $\bullet \Rightarrow \text{There is } \hat{H} \in \mathrm{H}^3(\hat{P}, \mathbb{Z}) \text{ with } \pi_* \hat{H} = F.$
- Top. T-duality: $(F, H) = (\pi_* \hat{H}, H) \longleftrightarrow (\hat{F}, \hat{H}) = (\pi_* H, \hat{H})$ Note: possibility of topology change!

Bouwknegt, Evslin, Hannabuss, Mathai (2004)

Topological T-duality, geometrically

T-correspondence:

Principal 2-bundles (without connections) over *X*:

- I. T-duality can lead to non-geometric backgrounds:
 - F^3 : H has no legs along fiber T-duality: identity
 - F^2 : H has 1 leg along fiber

 $T\text{-duality} \to \text{geometric string background}$

 F^1 : H has 2 legs along fiber

 $\mathsf{T}\text{-duality} \to Q\text{-space, (e.g. T-folds) locally geometric}$

 F^0 : H has all legs along fiber

T-duality ightarrow R-space, non-geometric

Nikolaus/Waldorf cover $F^2 \leftrightarrow F^2$ and $F^2 \leftrightarrow F^1$ T-dualities What about the general case?

II. Differential refinement of this picture

Why is this interesting/hard?

- I. need to use suitable groupoids and augmented groupoids
- II. connections on principal 2-bundles often require adjustment

Outline 7/39

- Categorified parallel transport
- Adjusted connections on principal 2-bundles
- F^k , $k \ge 2$: Geometric T-duality with principal 2-bundles
- Explicit example throughout: Nilmanifold
- The T-duality group from Kaluza-Klein reduction
- Non-geometric T-dualities: Q-spaces and R-spaces

Principal 2-bundles or Non-Abelian Gerbes

with Adjusted Connections

Principal bundles define parallel transport.

Parallel transport with gauge group G:

- Assignment $\gamma \mapsto g$ for path γ and group elt. $g \in G$.
- Gluing paths together leads to multiplication of the group elts.
- holonomy functor for points: $\mathsf{hol}(\gamma) = P \exp(\int_{\gamma} A) \in \mathsf{G}$ A: gauge potential, γ : surface, P: path ordering

Higher principal bundles define higher parallel transport.

Parallel transport with gauge group G?

- Assignment $\sigma \mapsto g$ for surface σ and group elt. $g \in G$?
- Gluing surfaces together leads to multiplication of group elts.?
- holonomy functor for surfaces: $\mathsf{hol}(\sigma) = P\exp(\int_{\sigma} B) \in \mathsf{G}$? B: gauge potential, σ : surface, P: does not exist:

Consistency of parallel transport requires:

$$(g_1'g_2')(g_1g_2) = (g_1'g_1)(g_2'g_2)$$

This renders group G abelian. Eckmann and Hilton, 1962

• Way out: higher categories, categorification:

$$(g_1'\otimes g_2')\circ (g_1\otimes g_2)=(g_1'\circ g_1)\otimes (g_2'\circ g_2).$$

A mathematical structure ("Bourbaki-style") consists of

- Sets
 Structure Functions
 Structure Equations
- "Categorification":

$$\mathsf{Sets} \to \mathsf{Categories}$$

Structure Functions → Structure Functors

 $Structure\ Equations \rightarrow Structure\ Isomorphisms$

Example: Group → 2-Group

- $\bullet \ \, \mathsf{Set} \, \, \mathsf{G} \to \mathsf{Category} \, \, \mathscr{G}$
- product, identity (1: $* \rightarrow G$), inverse \rightarrow Functors
- $a(bc) = (ab)c \rightarrow \mathsf{Associator} \ \mathsf{a} : a \otimes (b \otimes c) \Rightarrow (a \otimes b) \otimes c$
- $\mathbb{1}a = a\mathbb{1} = a \to \mathsf{Unitors}\ \mathsf{I}_a : a \otimes \mathbb{1} \Rightarrow a,\ \mathsf{r}_a : \mathbb{1} \otimes a \Rightarrow a$
- $\bullet \ aa^{-1} = a^{-1}a = \mathbb{1} \to \mathsf{weak} \ \mathsf{inv}. \ \mathsf{inv}(x) \otimes x \Rightarrow \mathbb{1} \Leftarrow x \otimes \mathsf{inv}(x)$

Note: Process not unique, variants: weak/strict/...

Higher groups: we are doing higher dimensional algebra.

• In a group, we can multiply ordered elements in one dimension:

$$a \cdot b \cdot \ldots \cdot d$$

In a 2-group, we can multiply "vertically" and "horizontally",
 i.e. in two dimensions:

÷

• In an n-group, we can multiply in n dimensions

Example: The Lie 2-group $\underline{\mathsf{TD}}_n$

Lie 2-group:

- Strict monoidal category
- Vertical product: o, composition of morphisms
- Horizontal product: ⊗

$\underline{\mathsf{TD}}_n$:

$$\mathbb{R}^{2n} \times \mathbb{Z}^{2n} \times \mathsf{U}(1) \Longrightarrow \mathbb{R}^{2n}$$

$$\xi \longleftrightarrow \xi - m_1 \longleftrightarrow \xi - m_1 - m_2$$

$$\mathrm{id}_{\xi} \coloneqq (\xi, 0, 0) \;, \quad (\xi, m, \phi)^{-1} \coloneqq (\xi - m, -m, -\phi)$$

$$(\xi_1, m_1, \phi_1) \otimes (\xi_2, m_2, \phi_2) \coloneqq (\xi_1 + \xi_2, m_1 + m_2, \phi_1 + \phi_2 - \langle \xi_1, m_2 \rangle)$$

$$\mathrm{inv}(\xi, m, \phi) \coloneqq (-\xi, -m, -\phi - \langle \xi, m \rangle)$$

Lie 2-groups are equivalently crossed modules of Lie groups:

- Pair of Lie groups (G, H)
- Group homomorphism $t: H \rightarrow G$
- Action $G \curvearrowright H$ by automorphisms.

 TD_n :

$$\mathsf{TD}_n := \left(\mathbb{Z}^{2n} \times \mathsf{U}(1) \xrightarrow{\mathsf{t}} \mathbb{R}^{2n} \right)$$
$$\mathsf{t}(m, \phi) := m$$
$$\xi \rhd (m, \phi) := (m, \phi - \langle \xi, m \rangle)$$

Essentially, all definitions of principal bundles have higher version.

Here: Čech cocycle description subordinate to a cover.

- Surjective submersion $\sigma: Y \to X$, e.g. $Y = \sqcup_a U_a$
- Čech groupoid:

$$\check{\mathscr{C}}(\sigma) : Y \times_X Y \rightrightarrows Y, \quad (y_1, y_2) \circ (y_2, y_3) = (y_1, y_3).$$

Principal G-bundle:

Transition functions are functor $g: \mathscr{E}(\sigma) \to (\mathsf{G} \rightrightarrows *)$

$$Y \times_X Y \xrightarrow{g} \qquad \qquad \downarrow G$$

$$\downarrow \qquad \qquad \downarrow g(y_1, y_2)g(y_2, y_3) = g(y_1, y_3)$$

Equivalences/bundle isomorphisms: natural isomorphisms.

Principal G-bundle:

Trans. fncs.: weak 2-functors $g: \check{\mathscr{C}}(\sigma) \to (\mathsf{G} \ltimes \mathsf{H} \rightrightarrows \mathsf{G} \rightrightarrows *)$

- Special case: H = U(1), G = *: abelian gerbes.
- Similarly: groupoid bundles, 2-groupoid bundles, ...,
 n-groupoid bundles.

Connections on principal 2-bundles: work a bit more... Breen, Messing (2005), Aschieri, Cantini, Jurčo (2005)

Data obtained for 2-group $G \ltimes H \rightrightarrows G$ and Lie 2-algebra $\mathfrak{g} \ltimes \mathfrak{h} \rightrightarrows \mathfrak{g}$: $h \in \Omega^0(Y^{[3]}, H) \quad \Lambda \in \Omega^1(Y^{[2]}, \mathfrak{h}) \quad B \in \Omega^2(Y, \mathfrak{h}) \quad \delta \in \Omega^2(Y^{[2]}, \mathfrak{h})$ $g \in \Omega^0(Y^{[2]}, G) \quad A \in \Omega^1(Y, \mathfrak{g})$

- ullet Note that δ sticks out unnaturally.
- It was dropped in most later work (Baez, Schreiber, ...)
- Price to pay: part of curvature must vanish
- Otherwise, problems with composition of gauge transformations

Object	Principal G-bundle	Principal (H $\stackrel{t}{\longrightarrow}$ G)-bundle
Cochains	(g_{ab}) valued in G	(g_{ab}) valued in G, (h_{abc}) valued in H
Cocycle	$g_{ab}g_{bc} = g_{ac}$	$t(h_{abc})g_{ab}g_{bc} = g_{ac}$ $h_{acd}h_{abc} = h_{abd}(g_{ab} \triangleright h_{bcd})$
Coboundary	$g_a g'_{ab} = g_{ab} g_b$	$g_a g'_{ab} = t(h_{ab}) g_{ab} g_b$ $h_{ac} h_{abc} = (g_a \rhd h'_{abc}) h_{ab} (g_{ab} \rhd h_{bc})$
gauge pot.	$A_a \in \Omega^1(U_a) \otimes \mathfrak{g}$	$A_{m{a}}\in\Omega^1(U_a)\otimes \mathfrak{g}$, $B_{m{a}}\in\Omega^2(U_a)\otimes \mathfrak{h}$
Curvature	$\mathbf{F_a} = \mathrm{d}A_a + \frac{1}{2}[A_a, A_a]$	$\mathcal{F}_a = dA_a + \frac{1}{2}[A_a, A_a] - t(B_a) \stackrel{!}{=} 0$ $H_a = dB_a + A_a \triangleright B_a$
Gauge trafos	$\tilde{A}_a := g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d} g_a$	$\begin{split} \tilde{A}_a &:= g_a^{-1} A_a g_a + g_a^{-1} \mathrm{d} g_a + \mathrm{t}(\Lambda_a) \\ \tilde{B}_a &:= g_a^{-1} \rhd B_a + \tilde{A}_a \rhd \Lambda_a + \mathrm{d} \Lambda_a - \Lambda_a \wedge \Lambda_a \end{split}$

Remarks:

- A principal $(1 \xrightarrow{t} G)$ -bundle is a principal G-bundle.
- A principal $(U(1) \xrightarrow{t} 1) = BU(1)$ -bundle is an abelian gerbe.

$$\mathcal{F} := dA + \frac{1}{2}[A, A] + \mathsf{t}(B) \stackrel{!}{=} 0$$

Without this condition:

- ullet Closure of gauge transformations generically requires ${\cal F}=0$
- Composition of cocycles generically requires $\mathcal{F} = 0$
- Higher parallel transport is not reparameterization invariant
- 6d Self-duality equation $H = \star H$ is not gauge-covariant:

$$H \to \tilde{H} = g \rhd H - \mathcal{F} \rhd \Lambda$$

With this condition:

- ullet Principal $(1 \stackrel{\mathsf{t}}{\longrightarrow} \mathsf{G})$ -bundle is flat principal G-bundle.
- Higher connections are locally abelian!

Gastel (2019), CS, Schmidt (2020)

Many (not all!) higher gauge groups come with

Adjustment of higher group G:

CS, Schmidt (2020), Rist, CS, Wolf (2022)

- Additional map $\kappa: \mathcal{G} \times \mathsf{Lie}(\mathcal{G}) \to \mathsf{Lie}(\mathcal{G}) + \mathsf{condition}$
- Necessary for consistent definition of invariant polynomials.
- From Alternator ($\Rightarrow EL_{\infty}$ -algebras, Borsten, Kim, CS (2021))

For connections on principal *G*-bundles:

- specifies $\delta \in \Omega^2(Y^{[2]}, \mathfrak{h})$ in terms of A and F
- Adjustment of curvature/cocycle/coboundary relations
- Can drop fake flatness condition

Archetypal example: string Lie 2-algebra

$$\begin{array}{ccc} & \mathfrak{string}(n) = & \mathbb{R}[1] \to \mathfrak{spin}(n) \\ \mu_2(x_1, x_2) = [x_1, x_2] \;, & \mu_3(x_1, x_2, x_3) = (x_1, [x_2, x_3]) \end{array}$$

Gauge potentials:

$$(A,B) \ \in \ \Omega^1(U) \otimes \mathfrak{spin}(n) \ \oplus \ \Omega^2(U)$$

Curvatures:

$$F := dA + \frac{1}{2}[A, A]$$

$$H := dB - \frac{1}{3!}(A, [A, A]) + (A, F)$$

$$= dB + \underbrace{(A, dA) + \frac{1}{3}(A, [A, A])}_{cs(A)}$$

Bianchi identities:

$$dF + [A, F] = 0$$
, $dH - (F, F) = 0$

- Nikolaus/Waldorf: Topological part:
 - ullet Gerbe and circle fibration combined into 2-bundles $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$
 - \mathcal{P} and \mathcal{P} are principal $\mathsf{TB}_n^{\mathsf{F2}}$ -bundles
 - \mathscr{P}_C is a principal TD_n -bundle
 - ullet $raket{p}$ is a projection induced by strict morphism $\hat{\phi}: \mathsf{TD}_n o \mathsf{TB}_n^{\mathsf{F2}}$
 - ullet $\hat{\mathsf{p}}$ induced by $\check{\phi} = \hat{\phi} \circ \phi_{\mathsf{flip}}$, flip morphism $\phi_{\mathsf{flip}} : \mathsf{TD}_n o \mathsf{TD}_n$

- Nikolaus/Waldorf: Topological part:
 - $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$ are principal $\mathsf{TB}_n^{\mathsf{F2}}$ -bundles
 - \mathscr{P}_C is a principal TD_n -bundle
- Differential refinement: (i.e. *B*-field+metric) Kim, CS (2022)
 - TB_n^{F2} does not come with adjustment, but
 - \bullet TD_n comes with very natural adjustment map
 - ullet Have topological and full connection data on \mathscr{P}_C
 - ullet Can reconstruct gerbe and bundle data on $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$
- Reproduces Buscher rules

Waldorf (2022)

• Generalization to affine torus bundles: use $GL(n, \mathbb{Z}) \ltimes TD_n$

Geometry of string background $\check{\mathscr{G}}_\ell o N_k$:

- Principal circle bundle over T^2 with $c_1 = k$
- Subordinate to $\mathbb{R}^2 o T^2$ and with $\mathrm{U}(1) \cong \mathbb{R}/\mathbb{Z}$

$$(x, y, z) \sim (x, y + 1, z) \sim (x, y, z + 1) \sim (x + 1, y, z - ky)$$

- Local connection form: $A(x,y) = kx \, dy \in \Omega^1(\mathbb{R}^2)$
- Kaluza–Klein metric: $g(x, y, z) = dx^2 + dy^2 + (dz + kx dy)^2$
- ullet Gerbes on N_k characterized by element of $H^3(N_k,\mathbb{Z})\cong\mathbb{Z}$

T-duality:

$$(\check{\mathscr{G}}_{\ell} \to N_k) \longleftrightarrow (\hat{\mathscr{G}}_k \to N_{\ell})$$

Kim, CS (2022)

Lie 2-group:

$$\mathsf{TD}_1 \ := \ \left(\mathbb{Z}^2 \times \mathsf{U}(1) \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^2\right)$$

Topological cocycle data:

$$g = \begin{pmatrix} \hat{\xi} \\ \hat{\xi} \end{pmatrix}, \quad \begin{cases} \hat{\xi}(x, y; x', y') = \ell(x' - x)y ,\\ \hat{\xi}(x, y; x', y') = k(x' - x)y ,\\ \end{pmatrix}$$

$$h = \begin{pmatrix} \hat{m} \\ \check{m} \\ \phi \end{pmatrix}, \quad \check{m}(x, y; x', y'; x'', y'') = -\ell(x'' - x')(y' - y)$$

$$\phi = \frac{1}{2}k\ell(y'(xx'' - xx' - x'x'') - (x'' - x')(y'^2 - y^2)x)$$

Cocycle data of differential refinement:

$$A = \begin{pmatrix} \mathring{A} \\ \mathring{A} \end{pmatrix} = \begin{pmatrix} kx \, dy \\ \ell x \, dy \end{pmatrix} , \quad B = 0 , \quad \Lambda = \frac{1}{2} k \ell (xx' \, dy + (xy + x'y' + y^2(x' - x)) \, dx)$$

Can reconstruct both string backgrounds fully.

Observation:

T-duality is intimately linked to Kaluza–Klein reduction:

- Gysin sequence contains fiber integration
- Metric on total space given by Kaluza–Klein metric
- Literature: e.g. Berman (2019), Alfonsi (2019), ...
- Geometric objects from maps into classifying spaces C.
- $\bullet \ \, \text{Note: currying} \,\, C^0(X\times T^n,\mathcal{C})\cong C^0(X,C^0(T^n,\mathcal{C})) \\$
- Non-trivial fibrations: cyclic torus space: $C^0(T^n,\mathcal{C})/\!/\mathrm{U}(1)^n$ cf. Fiorenza, Sati, Schreiber (2016a,2016b)
- Kaluza–Klein reduction:
 - ullet Principal G-bundle over circle fibration P o X
 - Classifying space BG
 - Cyclic loop space $LBG//U(1) \cong BH$
 - Work with principal H-bundles over X

Abstract nonsense: KK-reduction along circle fibers:

- $\mathsf{BBU}(1) \rightarrow \mathsf{LBBU}(1)/\!/\mathsf{U}(1) \cong \mathsf{B}(\mathsf{BU}(1) \times \mathsf{U}(1) \times \mathsf{U}(1))$
- $\bullet \ \, \mathsf{BU}(1) \ \, \to \ \, L\mathsf{BU}(1)/\!/\mathsf{U}(1) \cong \mathsf{BU}(1) \times \mathsf{U}(1) \times \mathsf{BU}(1)$

 TD_1 from KK-reduction of gerbe on circle bundle

- Gerbe: $C^0(P,\mathcal{C})$ with $\mathcal{C} = \mathsf{BBU}(1) \sim (\mathsf{U}(1) \rightrightarrows * \rightrightarrows *)$
- Replace U(1) with $\mathbb{Z} \to \mathbb{R}$: $\mathsf{TD_1} \ \coloneqq \ \left(\mathsf{U}(1) \times \mathbb{Z}^2 \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^2\right)$

 TD_2 from KK-reduction of principal TD_1 -bundle on circle bundle

- Principal 2-bundle: $C^0(P, \mathcal{C})$ with $\mathcal{C} = \mathsf{BTD}_1$
- Replace U(1) with $\mathbb{Z} \to \mathbb{R}$: $\mathsf{TD}_2 \coloneqq \left(\mathsf{U}(1) \times \mathbb{Z}^4 \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^4\right)$
- Here, we dropped parts, we actually get a 2-groupoid: $\mathscr{ID}_2 \cong \mathsf{BBU}(1) \times \mathsf{BU}(1)^{\times 4} \times \mathsf{U}(1)^{\times 4}$
- ullet Clear that g,B dim reduced on T^2 yield four scalar modes.

Iterate:
$$\mathsf{TD}_n := (\mathsf{U}(1) \times \mathbb{Z}^{2n} \xrightarrow{\mathsf{t}} \mathbb{R}^{2n})$$
 and \mathscr{TD}_n .

Abstract nonsense:

- Natural definition of morphism of 2-groups
- Automorphisms of 2-group form naturally a 2-group
- 2-group action $\mathscr{G} \curvearrowright \mathscr{H}$: morphism $\mathscr{G} \to \operatorname{Aut}(\mathscr{H})$

Automorphisms of the 2-group TD_n :

Can be computed to be weak (unital) Lie 2-group

$$\mathscr{GO}(n,n;\mathbb{Z}) \coloneqq \Big(\operatorname{GO}(n,n;\mathbb{Z}) \times \mathbb{Z}^{2n} \Longrightarrow \operatorname{GO}(n,n;\mathbb{Z}) \Big)$$

see also Waldorf (2022)

- While $GO(n, n; \mathbb{Z})$ does not act on TD_n , $\mathscr{GO}(n, n; \mathbb{Z})$ does.
- Recover T-duality group for affine torus bundles
- Explicit: geometric subgroup, B- and β -trafos, T-dualities as endo-2-functors on TD_n
- $\bullet \Rightarrow$ arrange everything based on $\mathscr{GO}(n, n; \mathbb{Z})$

- Two T-dualities yield scalars from metric and 2-form.
- Scalars live on the Narain moduli space for affine torus bundles:

$$GM_n = \mathsf{GO}(n, n; \mathbb{Z}) \setminus \mathsf{O}(n, n; \mathbb{R}) / \left(\mathsf{O}(n; \mathbb{R}) \times \mathsf{O}(n; \mathbb{R})\right)$$

=: $\mathsf{GO}(n, n; \mathbb{Z}) \setminus Q_n$

- Note: $Q_n \cong \mathbb{R}^{n^2}$ is a nice space
- Resolve into action groupoid:

$$\mathsf{GO}(n,n;\mathbb{Z})\ltimes Q_n \ \Rightarrow \ Q_n$$

- Extend to $\mathscr{GO}(n, n; \mathbb{Z})$ -action $(\mathscr{GO}(n, n; \mathbb{Z}) \cong \mathsf{Aut}(\mathsf{TD}_n))$
- Place TD_n -fiber over every point in Q_n
- Include action of $\mathscr{GO}(n, n; \mathbb{Z})$ on TD_n
- The result is the Lie 2-groupoid \mathscr{TD}_n

A non-geometric T-duality is simply a \mathcal{ID}_n -bundle.

Remarks:

- The T-duality group $\mathscr{GO}(n,n;\mathbb{Z})\supset \mathsf{GO}(n,n;\mathbb{Z})$ is gauged!
- Explicitly visible: $GO(n, n; \mathbb{Z})$ -gluing of local data
- Matches topological discussion in Nikolaus, Waldorf (2018)
- Differential refinement imposes restriction on top. cocycles
- This describes all T-dualities between pairs of T-folds
- Concrete conditions for "half-geometric" T-dualities
- Concrete cocycles of the T-fold in the nilmanifold example

To describe Q-spaces/T-folds: (can) use higher instead of noncommutative geometry.

Consider again the nilmanifold example, this time $X = S^1$.

- Gauge groupoid \mathscr{TD}_2
- General cocycle data:

$$\begin{split} (g,z,\xi,m,\phi,q) &\in C^{\infty}(Y^{[3]},\mathsf{GO}(2,2;\mathbb{Z}) \times \mathbb{Z}^4 \times \mathbb{R}^4 \times \mathbb{Z}^4 \times \mathsf{U}(1) \times Q_2) \\ (g,\xi,q) &\in C^{\infty}(Y^{[2]},\mathsf{GO}(2,2;\mathbb{Z}) \times \mathbb{R}^4 \times Q_2) \\ q &\in C^{\infty}(Y,Q_2) \end{split}$$

- ullet Topology: all data over $Y^{[3]}$ are trivial.
- Topology: no T^n -bundles over S^1 : ξ is trivial
- Remaining: $q:Y\to Q_2\cong \mathbb{R}^4$, $g:Y^{[2]}\to \mathsf{GO}(2,2;\mathbb{Z})$ s.t.:

$$q(y_1) = g(y_1, y_2)q(y_2)$$
, $g(y_1, y_2)g(y_2, y_3) = g(y_1, y_3)$

- \mathbb{R}^4 : scalar modes g_{yy} , g_{yz} , g_{zz} , B_{yz}
- Well-known T-fold is the special case where

$$g_{x+1,x} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \ell & 1 & 0 \\ -\ell & 0 & 0 & 1 \end{pmatrix}$$

- T-folds/Q-spaces relatively harmless, as locally geometric
- R-spaces are not even locally geometric
- But perhaps higher description still works?

Note:

- One T-duality direction: B-field \rightarrow 2-, 1-forms \Rightarrow Lie 2-group TD_n -bundles with connection
- Two T-duality directions: B-field \to 2-, 1-, 0-forms \Rightarrow Lie 2-groupoid \mathscr{TD}_n -bundles with connection
- Three T-duality directions: B-field \rightarrow 2-, 1-, 0-, "(-1)-forms" (Note: (-1)-forms have global "curvature" 0-forms)
 - \Rightarrow Augmented Lie 2-groupoid $\mathscr{TD}_n^{\mathrm{aug}}\text{-bundles}$ with connection

Need to switch to simplicial picture:

- (Higher) groupoids are Kan simplicial manifolds
- Higher groupoid 1-morphisms are simplicial maps
- Higher groupoid 2-morphisms are simplicial homotopies
- ullet "quasi-groupoids" or " $(\infty,1)$ -groupoids"

Augmented \mathscr{G} -groupoid bundles subordinate to $\sigma: Y \twoheadrightarrow X$:

T-duality as $\mathscr{TD}_n^{\mathrm{aug}}$ -bundles

Construction of $\mathscr{TD}_n^{\text{aug}}$:

- Augmentation by suitable space of R-fluxes
- Determined by finite version of tensor hierarchy
- Finite embedding tensor $\mathbb{R}^{2n} \to \mathsf{GO}(n,n;\mathbb{Z}) \subset \mathscr{GO}(n,n;\mathbb{Z})$
- plus some standard consistency conditions
- Beyond this, augmentation fairly trivial

Remarks on T-duality with \mathscr{ID}_n^{aug} -bundles:

- Explicit examples, e.g. from nilmanifolds
- Yields consistency conditions between Q- and R-fluxes
- All previously discussed cases included
- ullet All previously discussed also for affine U(1)-bundles

To describe R-spaces: (can) use higher instead of nonassociative geometry.

Summary 38/39

What has been done:

- Top. T-duality can be described using principal 2-bundles
- Differential refinement with adjusted curvatures
- Explicit description of geometric T-duality with nilmanifolds
- T-duality group is really a 2-group derived from KK-reduction
- Extended to Q-spaces or T-folds using 2-groupoid bundles
- ullet Extended to R-spaces using augmented 2-groupoid bundles

Future work:

- Link some mathematical results to physical expectations
- Link to pre-NQ-manifold pictures, DFT, and similar
- Non-abelian T-duality?
- U-duality

Thank You!