T-duality with categorified principal bundles

Christian Saemann Maxwell Institute and School of Mathematical and Computer Sciences Heriot–Watt University, Edinburgh

U Hertfordshire, 7.9.2022

Based on joint work with Hyungrok Kim: arXiv:2204.01783

T-duality: Motivation 2/39

- String theories on backgrounds with $U(1)$ -isometries: exchange of winding/momentum modes \Rightarrow a T-dual partner
- This duality qualitatively separates strings from particles
- Many reasons for studying T-duality
	- Better understanding of strings
	- Higher bundles/gerbes with connection
	- Non-geometric backgrounds
	- Mathematics: relation to Fourier–Mukai transform
	- $0.1.1$
- But: T-duality begs to be studied in non-trivial topologies

Approximations in the following $3/39$

- \bullet String theories on backgrounds with U(1)-isometries:
- \bullet Low-energy limit: corresponding supergravity contains B -field: \Rightarrow connective structure on a gerbe

Geometric string background:

- \circ A (Riemannian) manifold X
- \bullet A principal/affine torus bundle $\pi : P \to X$ (with connection)
- \circ An abelian gerbe (with connection) $\mathscr G$ on the total space of P

Ignore dynamics, i.e. no equations of motion imposed

Topological T-duality 4/39

Geometric string background:

- \circ A topological manifold X
- \circ A principal/affine torus bundle $\pi : P \to X$
- \circ An abelian gerbe $\mathscr G$ on the total space of P

Topological T-duality from exactness of the Gysin sequence

For example, for principal circle bundle:

 $\ldots \to \mathrm{H}^3(X, \mathbb{Z}) \xrightarrow{\pi^*} \mathrm{H}^3(P, \mathbb{Z}) \xrightarrow{\pi_*} \mathrm{H}^2(X, \mathbb{Z}) \xrightarrow{F \cup} \mathrm{H}^4(X, \mathbb{Z}) \to \ldots$

- Gerbe over P: 3-form $H \in H^3(P, \mathbb{Z})$
- Fiber integration $\pi_* H = \hat{F} \in \mathrm{H}^2(X,\mathbb{Z})$ with $F \cup \hat{F} = 0$
- \Rightarrow There is $\hat{H}\in \mathrm{H}^3(\hat{P},\mathbb{Z})$ with $\pi_*\hat{H}=F.$
- **Top.** T-duality: $(F, H) = (\pi_* \hat{H}, H) \longleftrightarrow (\hat{F}, \hat{H}) = (\pi_* H, \hat{H})$ Note: possibility of topology change!

Bouwknegt, Evslin, Hannabuss, Mathai (2004)

Topological T-duality, geometrically 5/39 T-correspondence:

Principal 2-bundles (without connections) over X :

Two open problems $\frac{6}{39}$

- I. T-duality can lead to non-geometric backgrounds:
	- F^3 : H has no legs along fiber
		- T-duality: identity
	- F^2 : H has 1 leg along fiber
		- T-duality \rightarrow geometric string background
	- F^1 : H has 2 legs along fiber T-duality $\rightarrow Q$ -space, (e.g. T-folds) locally geometric
	- $F^0\colon\ H$ has all legs along fiber

T-duality $\rightarrow R$ -space, non-geometric

Nikolaus/Waldorf cover $F^2\leftrightarrow F^2$ and $F^2\leftrightarrow F^1$ T-dualities What about the general case?

II. Differential refinement of this picture

Why is this interesting/hard?

- I. need to use suitable groupoids and augmented groupoids
- II. connections on principal 2-bundles often require adjustment

$\overline{\text{Outline}}$ $\overline{\text{7/39}}$

- Categorified parallel transport
- Adjusted connections on principal 2-bundles
- $F^k,\,k\geq 2$: Geometric T-duality with principal 2-bundles
- Explicit example throughout: Nilmanifold
- The T-duality group from Kaluza–Klein reduction
- Non-geometric T-dualities: Q-spaces and R-spaces

Principal 2-bundles or Non-Abelian Gerbes

with Adjusted Connections

Principal bundles define parallel transport.

Parallel transport with gauge group G :

- Assignment $\gamma \mapsto q$ for path γ and group elt. $q \in G$.
- Gluing paths together leads to multiplication of the group elts.
- holonomy functor for points: $hol(\gamma) = P \exp(\int_{\gamma} A) \in \mathsf{G}$ A: gauge potential, γ : surface, P: path ordering

Higher parallel transport 10/39

Higher principal bundles define higher parallel transport.

Parallel transport with gauge group G?

- Assignment $\sigma \mapsto q$ for surface σ and group elt. $q \in \mathsf{G}$?
- Gluing surfaces together leads to multiplication of group elts.?
- holonomy functor for surfaces: $hol(\sigma) = P \exp(\int_{\sigma} B) \in \mathsf{G}$?
	- B: gauge potential, σ : surface, P: does not exist:

Consistency of parallel transport requires:

 $(g'_1g'_2)(g_1g_2) = (g'_1g_1)(g'_2g_2)$

This renders group G abelian. Eckmann and Hilton, 1962 Way out: higher categories, categorification:

 $(g'_1 \otimes g'_2) \circ (g_1 \otimes g_2) = (g'_1 \circ g_1) \otimes (g'_2 \circ g_2)$.

Categorification and the contraction of the contrac

A mathematical structure ("Bourbaki-style") consists of • Sets • Structure Functions • Structure Equations "Categorification":

> $Sets \rightarrow$ Categories Structure Functions → Structure Functors Structure Equations \rightarrow Structure Isomorphisms

Example: Group \rightarrow 2-Group

- \circ Set G \rightarrow Category $\mathscr G$
- product, identity ($\mathbb{1} : * \to G$), inverse \to Functors
- $\phi(a(bc) = (ab)c \rightarrow \text{Associator } a : a \otimes (b \otimes c) \Rightarrow (a \otimes b) \otimes c$
- \bullet $\mathbb{1}a = a\mathbb{1} = a \rightarrow$ Unitors $\mathsf{I}_a : a \otimes \mathbb{1} \Rightarrow a$, $\mathsf{r}_a : \mathbb{1} \otimes a \Rightarrow a$
- $aa^{-1} = a^{-1}a = 1 \rightarrow$ weak inv. inv $(x) \otimes x \Rightarrow 1 \Leftarrow x \otimes$ inv (x)

Note: Process not unique, variants: weak/strict/...

Categorification: Higher dimensional algebra

Higher groups: we are doing higher dimensional algebra.

- In a group, we can multiply ordered elements in one dimension: $a \cdot b \cdot \ldots \cdot d$
- In a 2-group, we can multiply "vertically" and "horizontally", i.e. in two dimensions:

 \bullet In an n-group, we can multiply in n dimensions

. . .

Example: The Lie 2-group TD_n

Lie 2-group:

- Strict monoidal category
- Vertical product: ◦, composition of morphisms
- Horizontal product: ⊗

 TD_n :

13/39

Lie 2-groups are equivalently crossed modules of Lie groups:

- \circ Pair of Lie groups (G, H)
- Group homomorphism $t : H \rightarrow G$
- \circ Action G \sim H by automorphisms.

TD_n :

$$
TD_n := (\mathbb{Z}^{2n} \times \mathsf{U}(1) \xrightarrow{\mathsf{t}} \mathbb{R}^{2n})
$$

$$
\mathsf{t}(m,\phi) := m
$$

$$
\xi \triangleright (m,\phi) := (m,\phi - \langle \xi, m \rangle)
$$

Principal 2-bundles, topologically 15/39

Essentially, all definitions of principal bundles have higher version.

Here: Čech cocycle description subordinate to a cover.

Surjective submersion $\sigma: Y \twoheadrightarrow X$, e.g. $Y = \Box_a U_a$ Čech groupoid:

 $\overrightarrow{\mathscr{C}}(\sigma)$: $Y \times_X Y \rightrightarrows Y$, $(y_1, y_2) \circ (y_2, y_3) = (y_1, y_3)$.

Principal G-bundle:

Transition functions are functor $q : \check{\mathscr{C}}(\sigma) \to (\mathsf{G} \rightrightarrows *)$

 $g(y_1, y_2)g(y_2, y_3) = g(y_1, y_3)$

Equivalences/bundle isomorphisms: natural isomorphisms.

Principal 2-bundles, topologically 16/39

Principal G-bundle:

Trans. fncs.: weak 2-functors $g : \check{\mathscr{C}}(\sigma) \to (\mathsf{G} \ltimes \mathsf{H} \rightrightarrows \mathsf{G} \rightrightarrows *)$

- Special case: $H = U(1)$, $G = *$: abelian gerbes.
- Similarly: groupoid bundles, 2-groupoid bundles, . . . , n -groupoid bundles.

A bit harder: Connections 17/39

Connections on principal 2-bundles: work a bit more... Breen, Messing (2005), Aschieri, Cantini, Jurčo (2005)

Data obtained for 2-group G \ltimes H \Rightarrow G and Lie 2-algebra $\mathfrak{g} \ltimes \mathfrak{h} \Rightarrow \mathfrak{g}$: $h\in \Omega^0(Y^{[3]},\mathsf{H})\quad \Lambda\in \Omega^1(Y^{[2]},\mathfrak{h})\quad B\in \Omega^2(Y,\mathfrak{h})\quad \delta\in \Omega^2(Y^{[2]},\mathfrak{h})$ $g \in \Omega^0(Y^{[2]},\mathsf{G}) \quad A \in \Omega^1(Y,\mathfrak{g})$

- \bullet Note that δ sticks out unnaturally.
- It was dropped in most later work (Baez, Schreiber, ...)
- Price to pay: part of curvature must vanish
- Otherwise, problems with composition of gauge transformations

Principal 2-Bundles 18/39

Remarks:

- A principal $(1 \stackrel{t}{\longrightarrow} G)$ -bundle is a principal G-bundle.
- A principal $(U(1) \stackrel{t}{\longrightarrow} 1) = BU(1)$ -bundle is an abelian gerbe.

Why should the fake curvature(s) vanish?

$$
\mathcal{F} := \mathrm{d}A + \tfrac{1}{2}[A,A] + \mathsf{t}(B) \stackrel{!}{=} 0
$$

Without this condition:

- Closure of gauge transformations generically requires $\mathcal{F} = 0$
- Composition of cocycles generically requires $\mathcal{F} = 0$
- Higher parallel transport is not reparameterization invariant
- 6d Self-duality equation $H = \star H$ is not gauge-covariant:

 $H \to \tilde{H} = q \rhd H - \mathcal{F} \rhd \Lambda$

With this condition:

- Principal $(1 \stackrel{t}{\longrightarrow} G)$ -bundle is flat principal G-bundle.
- **Higher connections are locally abelian!**

Gastel (2019), CS, Schmidt (2020)

Solution: Adjustment 20/39

Many (not all!) higher gauge groups come with

Adjustment of higher group \mathcal{G} : CS, Schmidt (2020), Rist, CS, Wolf (2022) • Additional map $\kappa : \mathcal{G} \times \text{Lie}(\mathcal{G}) \to \text{Lie}(\mathcal{G})$ + condition Necessary for consistent definition of invariant polynomials. \circ From Alternator ($\Rightarrow EL_{\infty}$ -algebras, Borsten, Kim, CS (2021)) For connections on principal G -bundles:

- specifies $\delta \in \Omega^2(Y^{[2]}, \mathfrak{h})$ in terms of A and F
- Adjustment of curvature/cocycle/coboundary relations
- Can drop fake flatness condition

Physics example: Heterotic supergravity

Archetypal example: string Lie 2-algebra $\mathfrak{string}(n) = \mathbb{R}[1] \rightarrow \mathfrak{spin}(n)$ $\mu_2(x_1, x_2) = [x_1, x_2], \quad \mu_3(x_1, x_2, x_3) = (x_1, [x_2, x_3])$ Gauge potentials:

 $(A, B) \in \Omega^1(U) \otimes \mathfrak{spin}(n) \oplus \Omega^2(U)$

Curvatures:

$$
F := dA + \frac{1}{2}[A, A]
$$

\n
$$
H := dB - \frac{1}{3!}(A, [A, A]) + (A, F)
$$

\n
$$
= dB + (A, dA) + \frac{1}{3}(A, [A, A])
$$

\ncs(A)

Bianchi identities:

$$
dF + [A, F] = 0 , \quad dH - (F, F) = 0
$$

Geometric T-duality

Geometric T-duality: General Picture 23/39

- Nikolaus/Waldorf: Topological part:
	- \circ Gerbe and circle fibration combined into 2-bundles $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$
	- $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$ are principal TB $_n^{\textsf{F2}}$ -bundles
	- \bullet \mathscr{P}_C is a principal TD_n-bundle
	- $\check{\mathsf{p}}$ is a projection induced by strict morphism $\hat{\phi}:\mathsf{TD}_n\to\mathsf{TB}_n^{\mathsf{F2}}$
	- **•** \hat{p} induced by $\check{\phi} = \hat{\phi} \circ \phi_{\text{flip}}$, flip morphism $\phi_{\text{flip}} : TD_n \rightarrow TD_n$

Geometric T-duality: General Picture 24/39

- Nikolaus/Waldorf: Topological part:
	- $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$ are principal TB^{F2}-bundles
	- \bullet \mathscr{P}_C is a principal TD_n-bundle

Differential refinement: (i.e. B-field+metric) Kim, CS (2022)

- $\mathsf{TB}_n^{\mathsf{F2}}$ does not come with adjustment, but
- \bullet TD_n comes with very natural adjustment map
- \bullet Have topological and full connection data on \mathscr{P}_C
- \circ Can reconstruct gerbe and bundle data on $\check{\mathscr{P}}$ and $\hat{\mathscr{P}}$
- Reproduces Buscher rules Waldorf (2022)
- \bullet Generalization to affine torus bundles: use GL $(n,\mathbb{Z})\ltimes \textsf{TD}_n$

Example: 3d Nilmanifolds 25/39

Geometry of string background $\check{\mathscr{G}}_\ell \to N_k$:

- Principal circle bundle over T^2 with $c_1 = k$
- Subordinate to $\mathbb{R}^2 \to T^2$ and with $\mathsf{U}(1) \cong \mathbb{R}/\mathbb{Z}$

 $(x, y, z) \sim (x, y + 1, z) \sim (x, y, z + 1) \sim (x + 1, y, z - ky)$

- Local connection form: $A(x, y) = kx \, dy \in \Omega^1(\mathbb{R}^2)$
- Kaluza–Klein metric: $g(x, y, z) = dx^2 + dy^2 + (dz + kx dy)^2$
- Gerbes on N_k characterized by element of $H^3(N_k, \mathbb{Z}) \cong \mathbb{Z}$

T-duality:

$$
(\check{\mathscr{G}}_{\ell} \to N_k) \iff (\hat{\mathscr{G}}_{k} \to N_{\ell})
$$

Explicit T-duality example with principal 2-bundles $26/39$

Lie 2-group:

 $TD_1 := (\mathbb{Z}^2 \times \mathsf{U}(1) \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^2)$

Topological cocycle data:

$$
g = \begin{pmatrix} \hat{\xi} \\ \hat{\xi} \end{pmatrix} , \quad \hat{\xi}(x, y; x', y') = \ell(x' - x)y ,
$$

\n
$$
\check{\xi}(x, y; x', y') = k(x' - x)y ,
$$

\n
$$
h = \begin{pmatrix} \hat{m} \\ \check{m} \\ \phi \end{pmatrix} , \quad \begin{array}{l} \hat{m}(x, y; x', y'; x'', y'') = -\ell(x'' - x')(y' - y) \\ \hat{m}(x, y; x', y'; x'', y'') = -k(x'' - x')(y' - y) \\ \phi = \frac{1}{2}k\ell(y'(xx'' - xx' - x'x'') - (x'' - x')(y'^2 - y^2)x) \end{array}
$$

\n**Cocycle data of differential refinement:**

 $A = \begin{pmatrix} \tilde{A} \\ \frac{\tilde{A}}{A} \end{pmatrix}$ \hat{A} $= \left(\begin{matrix} kx \ dy \\ 0 \ z \end{matrix} \right)$ $\ell x \, dy$), $B = 0$, $\Lambda = \frac{1}{2}k\ell(xx' dy + (xy + x'y' + y^2(x'-x)) dx)$ Can reconstruct both string backgrounds fully.

The T-duality group from Kaluza–Klein Reduction

The group TD_n from Kaluza–Klein reduction $28/39$

Observation:

T-duality is intimately linked to Kaluza–Klein reduction:

- Gysin sequence contains fiber integration
- Metric on total space given by Kaluza–Klein metric
- \circ Literature: e.g. Berman (2019), Alfonsi (2019),
- \circ Geometric objects from maps into classifying spaces C.
- Note: currying $C^0(X \times T^n, \mathcal{C}) \cong C^0(X, C^0(T^n, \mathcal{C}))$
- Non-trivial fibrations: cyclic torus space: $C^0(T^n, \mathcal{C})/\!/\mathsf{U}(1)^n$ cf. Fiorenza, Sati, Schreiber (2016a,2016b)
- Kaluza–Klein reduction:
	- Principal G-bundle over circle fibration $P \to X$
	- Classifying space BG
	- Cyclic loop space $LBG//U(1) \cong BH$
	- \bullet Work with principal H-bundles over X

The 2-group TD_n from Kaluza–Klein reduction $29/39$

Abstract nonsense: KK-reduction along circle fibers:

- \circ BBU(1) \rightarrow LBBU(1)//U(1) ≅ B(BU(1) \times U(1) \times U(1))
- \circ BU(1) \rightarrow LBU(1)//U(1) ≅ BU(1) \times U(1) \times BU(1)

 TD_1 from KK-reduction of gerbe on circle bundle

- Gerbe: $C^0(P, \mathcal{C})$ with $\mathcal{C} = \text{BBU}(1) \sim (\text{U}(1) \rightrightarrows \cdot \rightrightarrows \cdot)$
- Replace $\mathsf{U}(1)$ with $\mathbb{Z} \to \mathbb{R}$: $\mathsf{TD}_1 := (\mathsf{U}(1) \times \mathbb{Z}^2 \xrightarrow{t} \mathbb{R}^2)$

 TD_2 from KK-reduction of principal TD_1 -bundle on circle bundle Principal 2-bundle: $C^0(P, \mathcal{C})$ with $\mathcal{C} = \mathsf{BTD}_1$

- Replace $\mathsf{U}(1)$ with $\mathbb{Z} \to \mathbb{R}$: $\mathsf{TD}_2 := (\mathsf{U}(1) \times \mathbb{Z}^4 \xrightarrow{t} \mathbb{R}^4)$
- Here, we dropped parts, we actually get a 2-groupoid: $\mathscr{TD}_2 \cong \mathsf{BBU}(1) \times \mathsf{BU}(1)^{\times 4} \times \mathsf{U}(1)^{\times 4}$

Clear that g, B dim reduced on T^2 yield four scalar modes. Iterate: $\mathsf{TD}_n \;:=\; \big(\mathsf{U}(1) \times \mathbb{Z}^{2n} \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{R}^{2n}\big)$ and \mathscr{TD}_n .

Automorphisms of TD_n 30/39

Abstract nonsense:

- Natural definition of morphism of 2-groups
- Automorphisms of 2-group form naturally a 2-group
- **2-group action** $\mathscr{G} \curvearrowright \mathscr{H}$: morphism $\mathscr{G} \rightarrow \text{Aut}(\mathscr{H})$

Automorphisms of the 2-group TD_n :

Can be computed to be weak (unital) Lie 2-group

$$
\mathscr{GO}(n,n;\mathbb{Z}) \coloneqq \left(\begin{array}{c} \mathsf{GO}(n,n;\mathbb{Z}) \times \mathbb{Z}^{2n} \longrightarrow \mathsf{GO}(n,n;\mathbb{Z}) \\ \mathsf{see} \text{ also Waldorf (2022)} \end{array} \right)
$$

- While $\mathsf{GO}(n,n;\mathbb{Z})$ does not act on TD_n , $\mathscr{GC}(n,n;\mathbb{Z})$ does.
- o Recover T-duality group for affine torus bundles
- \circ Explicit: geometric subgroup, B and β -trafos, T-dualities as endo-2-functors on TD_n
- $\bullet \Rightarrow$ arrange everything based on $\mathscr{G}\mathscr{O}(n, n; \mathbb{Z})$

Non-geometric T-dualities: Q-spaces and R-spaces

The 2-groupoid \mathscr{ID}_n 32/39

- Two T-dualities yield scalars from metric and 2-form.
- Scalars live on the Narain moduli space for affine torus bundles: $GM_n = \text{GO}(n, n; \mathbb{Z}) \setminus \text{O}(n, n; \mathbb{R}) / (\text{O}(n; \mathbb{R}) \times \text{O}(n; \mathbb{R}))$ $=:\mathsf{GO}(n,n;\mathbb{Z})\setminus Q_n$
- Note: $Q_n \cong {\rm I\!R}^{n^2}$ is a nice space
- Resolve into action groupoid:

 $\mathsf{GO}(n, n; \mathbb{Z}) \ltimes Q_n \Rightarrow Q_n$

- \bullet Extend to $\mathscr{G}\mathscr{O}(n, n; \mathbb{Z})$ -action $(\mathscr{G}\mathscr{O}(n, n; \mathbb{Z}) \cong Aut(TD_n))$
- Place TD_n -fiber over every point in Q_n
- Include action of $\mathscr{G}\mathscr{O}(n, n; \mathbb{Z})$ on TD_n
- \bullet The result is the Lie 2-groupoid \mathscr{TD}_n

T-duality as \mathscr{ID}_n -bundles $33/39$

A non-geometric T-duality is simply a \mathscr{TD}_n -bundle.

Remarks:

- The T-duality group $\mathscr{GC}(n, n; \mathbb{Z}) \supset \mathsf{GO}(n, n; \mathbb{Z})$ is gauged!
- Explicitly visible: $\mathsf{GO}(n, n; \mathbb{Z})$ -gluing of local data
- Matches topological discussion in Nikolaus, Waldorf (2018)
- Differential refinement imposes restriction on top. cocycles
- This describes all T-dualities between pairs of T-folds
- Concrete conditions for "half-geometric" T-dualities
- Concrete cocycles of the T-fold in the nilmanifold example

To describe Q-spaces/T-folds: (can) use higher instead of noncommutative geometry.

Example: T-folds 34/39

Consider again the nilmanifold example, this time $X = S^1$.

- \circ Gauge groupoid \mathscr{TD}_2
- General cocycle data:

 $(g, z, \xi, m, \phi, q) \in C^{\infty}(Y^{[3]}, \text{GO}(2, 2; \mathbb{Z}) \times \mathbb{Z}^{4} \times \mathbb{R}^{4} \times \mathbb{Z}^{4} \times \text{U}(1) \times Q_{2})$ $(g, \xi, q) \in C^{\infty}(Y^{[2]}, \mathsf{GO}(2, 2; \mathbb{Z}) \times \mathbb{R}^4 \times Q_2)$ $q \in C^{\infty}(Y, Q_2)$

- Topology: all data over $Y^{[3]}$ are trivial.
- Topology: no T^n -bundles over S^1 : ξ is trivial
- Remaining: $q:Y\to Q_2\cong \mathbb{R}^4$, $g:Y^{[2]}\to \mathsf{GO}(2,2;\mathbb{Z})$ s.t.:

 $q(y_1) = g(y_1, y_2)q(y_2)$, $g(y_1, y_2)g(y_2, y_3) = g(y_1, y_3)$ \mathbb{R}^4 : scalar modes g_{yy} , g_{yz} , g_{zz} , B_{yz}

o Well-known T-fold is the special case where

 $g_{x+1,x} =$ $\sqrt{2}$ $\left\vert \right\vert$ 1 0 0 0 0 1 0 0 $0 \quad \ell \quad 1 \quad 0$ $-\ell$ 0 0 1 V. $\Big\}$

What about R -spaces? $35/39$

- T-folds/Q-spaces relatively harmless, as locally geometric
- \circ R-spaces are not even locally geometric
- But perhaps higher description still works?

Note:

- \circ One T-duality direction: B-field \rightarrow 2-, 1-forms \Rightarrow Lie 2-group TD_n-bundles with connection
- \circ Two T-duality directions: B -field \rightarrow 2-, 1-, 0-forms \Rightarrow Lie 2-groupoid \mathscr{ID}_n -bundles with connection
- \circ Three T-duality directions: B-field \rightarrow 2-, 1-, 0-, "(-1)-forms" (Note: (-1)-forms have global "curvature" 0-forms) \Rightarrow Augmented Lie 2-groupoid $\mathscr{D}\!\mathscr{D}^{\rm aug}_n$ -bundles with connection

Augmented groupoid bundles 36/39

Need to switch to simplicial picture:

- (Higher) groupoids are Kan simplicial manifolds
- Higher groupoid 1-morphisms are simplicial maps
- Higher groupoid 2-morphisms are simplicial homotopies
- \circ "quasi-groupoids" or " $(\infty, 1)$ -groupoids"

Augmented $\mathscr G$ -groupoid bundles subordinate to $\sigma: Y \twoheadrightarrow X$:

$$
Y \times_X Y \times_X Y \xrightarrow{g_2} \qquad \qquad \mathscr{G}_2
$$
\n
$$
\downarrow \qquad \qquad Y \times_X Y \xrightarrow{g_1} \qquad \qquad \downarrow \qquad \qquad \mathscr{G}_1
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \mathscr{G}_1
$$
\n
$$
\downarrow \qquad \qquad \mathscr{G}_2
$$

T-duality as $\mathscr{TD}_n^{\text{aug}}$ -bundles argmin

Construction of $\mathscr{TD}^{\text{aug}}_n$:

- Augmentation by suitable space of R -fluxes
- **O** Determined by finite version of tensor hierarchy
- Finite embedding tensor \mathbb{R}^{2n} → GO $(n, n; \mathbb{Z}) \subset \mathscr{GO}(n, n; \mathbb{Z})$
- o plus some standard consistency conditions
- Beyond this, augmentation fairly trivial

Remarks on T-duality with $\mathscr{P}\!\mathscr{D}^{\mathrm{aug}}_{n}$ -bundles:

- Explicit examples, e.g. from nilmanifolds
- \bullet Yields consistency conditions between Q and R -fluxes
- All previously discussed cases included
- \circ All previously discussed also for affine U(1)-bundles

To describe R -spaces:

(can) use higher instead of nonassociative geometry.

$Summary \longrightarrow 38/39$

What has been done:

- Top. T-duality can be described using principal 2-bundles
- o Differential refinement with adjusted curvatures
- Explicit description of geometric T-duality with nilmanifolds
- T-duality group is really a 2-group derived from KK-reduction
- \bullet Extended to Q-spaces or T-folds using 2-groupoid bundles
- \bullet Extended to R-spaces using augmented 2-groupoid bundles

Future work:

- Link some mathematical results to physical expectations
- \bullet Link to pre- NO -manifold pictures, DFT, and similar
- Non-abelian T-duality?
- U-duality

Thank You!