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Introduction

Goals/Structure

1. Motivate Non-relativistic geometry
2. Properly explain “non-relativistic” symmetries
3. Derive corresponding geometry by gauge procedure
4. Understand how this encodes Newtonian physics
5. Understand how this relates to null Reductions
6. Hint at why you might encounter these
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Motivation

Motivation

• Motion of free falling observer x(s), s ∈ I ⊆ R:

ẍµ + Γµ
αβ ẋαẋβ = 0

with µ, α, β = 0, . . . d − 1

• Compare to particle in Newtonian potential ϕ:

d2xa

dt2 + δab∂bϕ = 0,

with a = 1, . . . d − 1 spacial
• Deviation from straight line due to:

Gravitational force ↔ Curvature in Newtonian Spacetime
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Motivation

Affine Connection

• Assume: special spacetime coordinates: (xµ(t)) = (t, xa(t))

• Read off Christoffel Symbols from

d2xa

dt2 + δab∂bϕ = 0 (1)

=⇒ only non-zero Christoffels

Γa
00 = δab∂bϕ

=⇒ only non-zero Curvature

Ra
0b0 = δac∂c∂bϕ
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Motivation

EOM + Interpretation

• Impose EOM

R := Ra
0a0 ≡ ∆ϕ = 4πGNρ, (2)

GN . . . Newton constant, ρ . . . mass density

=⇒ Recover Newtonian gravity:
Poisson equation eq. 2 + Newtonian force eq. 1

Question:
How to interpret this geometrically?
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Non-relativistic Structures

Non-relativistic symmetries

• Newtonian =⇒ At least Galilei symmetries

t′ = t + ζ0

x′a = Aa
bxb + vat + ζa,

- ζ0 ↔ time translation
- ζa ↔ space translation
- Aa

b ↔ SO(d − 1), i.e. spacial rotations
- va ↔ boosts

• Note: [Boosts, Translations] = 0
• Spacetime version: x′µ = Λµ

νxν + ζµ with

Λ =

(
1 0
v A

)
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Non-relativistic Structures

Defining tensors

• Galilei preserves two degenerate “metrics”

• Temporal metric

(tµν) =
(

1 0
0 0d−1

)

• Spacial co-metric

(hµν) =
(

0 0
0 1d−1

)

• Mutually orthogonal

tµνhνρ = 0

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 7 / 25



Non-relativistic Structures

Defining tensors

• Galilei preserves two degenerate “metrics”
• Temporal metric

(tµν) =
(

1 0
0 0d−1

)

• Spacial co-metric

(hµν) =
(

0 0
0 1d−1

)

• Mutually orthogonal

tµνhνρ = 0

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 7 / 25



Non-relativistic Structures

Defining tensors

• Galilei preserves two degenerate “metrics”
• Temporal metric

(tµν) =
(

1 0
0 0d−1

)

• Spacial co-metric

(hµν) =
(

0 0
0 1d−1

)

• Mutually orthogonal

tµνhνρ = 0

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 7 / 25



Non-relativistic Structures

Defining tensors

• Galilei preserves two degenerate “metrics”
• Temporal metric

(tµν) =
(

1 0
0 0d−1

)

• Spacial co-metric

(hµν) =
(

0 0
0 1d−1

)

• Mutually orthogonal

tµνhνρ = 0

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 7 / 25



Non-relativistic Structures

Non-relativistic Vielbeine

• Introduce vielbein formalism
• clock form

tµν = τµτν

• spacial vielbein

δab = hµνe a
µ e b

ν

• Read off variations

δτµ = Lξτµ,

δe a
µ = Lξe a

µ + λa
be b

µ + λaτµ,

spacial rotation λa
b, boost λa and diffeomorphism ξ
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Non-relativistic Structures

Splitting Tensors

• Projective inverses:
e a
µ τµ = 0, eµaτµ = 0,

e a
µ eµb = δa

b , τµτ
µ = 1,

δµν = τµτν + eµae a
ν

• Split tensors into flat parts

Tµ = δνµTν = (τνTν)τµ + (eνaTν)e a
µ =: T0τµ + Tae a

µ
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Bargmann Algebra

Simple Example

Question:
Did we find all relevant symmetries?

• Study simplest representation: Free Newtonian particle
(xµ) = (x0, xa) with action

S[xµ] = m
2

ˆ
dτ δabẋaẋb

ẋ0

• S inert under rotations and translations
• S only quasi-invariant under boosts δBxa = λax0, i.e.

δBS =

ˆ
dτ d

dτ
(
mλixi)

=⇒ modifies boost Noether charge
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ẋ0
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ẋ0

• S inert under rotations and translations
• S only quasi-invariant under boosts δBxa = λax0, i.e.

δBS =

ˆ
dτ d

dτ
(
mλixi)

=⇒ modifies boost Noether charge
Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 10 / 25



Bargmann Algebra

Commutation Relations

• Compute algebra of Noether charges

• Agrees with Galilei symmetries except for boosts and translations

QP = −paζ
a,

QB = mλaxa − paλ
ax0

}
=⇒ {QB,QP} = −mλaζ

a ̸= 0

Conclusion
Need central extension of Galilei: The Bargmann algebra barg
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Bargmann Algebra

Interpretation

• Extra charge ↔ Mass conservation

• Introduce coordinate s s.t. δs = −λaxa

S[x, s] = m
2

ˆ
dτ

(
δabẋaẋb

ẋ0 + 2ṡ
)

• conjugate momentum to s ↔ mass m

ps =
∂L
∂ṡ ≡ m

• s cyclic =⇒ m conserved

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 12 / 25



Bargmann Algebra

Interpretation

• Extra charge ↔ Mass conservation
• Introduce coordinate s s.t. δs = −λaxa

S[x, s] = m
2

ˆ
dτ

(
δabẋaẋb
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ẋ0 + 2ṡ
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Bargmann Algebra

The Algebra Of Newtonian Physics

• Full definition of barg:

[Jab, Jcd] = 4δ[a[cJd]b],

[Pa, Jbc] = 2δa[bPc],

[Ba, Jbc] = 2δa[bBc],

[H,Ba] = Pa,

[Pa,Bb] = δabM,

with a = 1, . . . d − 1
- Jab ↔ rotations
- Pa ↔ spacial translations
- H ↔ time translations
- Ba ↔ non-relativistic boosts
- M ↔ central extension (U(1)) generator
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Gauging of Bargmann Algebra

The Gauge Fields

• Geometry of barg ↔ Newton-Cartan geometry

• Usual gauging procedure:
Generator Parameter Gauge field

H ξ0 τµ
Pa ξa e a

µ

J[ab] λab ω ab
µ

Ba λa ω a
µ

M σ mµ
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Gauging of Bargmann Algebra

How to Include Diffeomorphisms

• Variations:

δτµ = ∂µξ
0,

δe a
µ = ∂µξ

a − ω a
µ bξ

b + λa
be b

µ + λaτµ − ω a
µ ξ0,

δmµ = ∂µσ − ω a
µ ξa + λae a

µ

• Diffeomorphism ξ expressed via above variations

δξτµ ≡Lξτµ = ∂µ (ξ
ατα)− ξαRµα(H),

δξe a
µ =∂µ (ξ

αe a
α )− ω a

µ bξ
αe b

α + ξαω a
α be b

µ + ξαω a
α τµ

− ω a
µ ξατα − ξαRµα(Pa),

δξmµ =∂µ (ξ
αmα)− ω a

µ ξαeµa + ξαωαae a
µ − ξαRµα(M)

• Curvature corresponding to generator T ↔ R(T)
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Gauging of Bargmann Algebra

Vielbeine and Connections

• τµ, e a
µ ↔ NR-Vielbeine:

ξ0 ≡ξµτµ, δτµ = Lξτµ,

ξa ≡ξµe a
µ , δe a

µ = Lξe a
µ + λa

be b
µ + λaτµ

• Central charge “mass” vielbein δmµ = Lξmµ + ∂µσ + λae a
µ

• Torsion

Rµν(H) = 2∂[µτν],
Rµν(Pa) = 2∂[µeν]a − 2ω ab

[µ eν]b − 2ω a
[µ τν],

Rµν(M) = 2∂[µmν] − 2ω a
[µ eν]a

• See ω ab
µ , ω a

µ appear only algebraically
=⇒ solve for in terms of (τ, e,m)
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[µ eν]a

• See ω ab
µ , ω a

µ appear only algebraically
=⇒ solve for in terms of (τ, e,m)
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Gauging of Bargmann Algebra

Intrinsic torsion

• ω does not appear in R(H) =⇒ cannot be absorbed into ω

=⇒ R(H) ≡ intrinsic torsion
• Classifies geometries:

1. Torsionless R(H) ≡ dτ = 0:
- Absolute time: ∃ t : M → R s.t. τ = dt

=⇒ T :=

ˆ
γ
τ ≡ t(x)− t(y)

- Absolute simultaneity: Ker τ ≡ Im e defines foliation into
spaces of simultaneity

2. Twistless torsional: dτ ̸= 0 but τ ∧ dτ = 0
=⇒ Absolute simultaneity but not absolute time

3. Torsional: No constraints
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Gauging of Bargmann Algebra

Visualization Of Foliation

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 18 / 25



Gauging of Bargmann Algebra

Galilean Gravity

Question:
How to connect to Newtonian gravity we had in beginning?

• Impose curvature/torsion constraints:

R(P) = R(H) = R(M) = R(J) ≡ 0

• Keep only curvature of boosts

Rµν(Ba) = 2∂[µων]
a − 2ω ab

[µ ων]b

=⇒ Encodes gravitational dynamics
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Gauging of Bargmann Algebra

Galilean Gravity

• Flat Galilean manifold has special frames

τµ = δ0
µ , e a

µ = δa
µ , ma = 0, ω ab

µ = 0,

corresponding to Galilean coordinates (xµ) = (t, xa)

• Constrains variations to known Galilean ones

ξ0(x) = ξ0, λab(x) = λab, σ = 0,
ξa(x) = ξa(t)− λa

bδ
b
µxµ, λa(x) = −ξ̇a(t)

• Only independent field left is a static scalar field

m0((xa)) =: ϕ((xa))
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Gauging of Bargmann Algebra

Galilean Gravity

• Only non-zero boost connection

ω a
0 (x) = −∂aϕ(x)

• Impose equation of motion

R0a(Ba) ≡ ∂a∂
aϕ = 0

=⇒ Recover Poisson eq. 2
• Geodesic equation for this connection =⇒ Newtonian force eq. 1

Conclusion
Newton-Cartan geometry encodes Newtonian gravity

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 21 / 25



Gauging of Bargmann Algebra

Galilean Gravity

• Only non-zero boost connection

ω a
0 (x) = −∂aϕ(x)

• Impose equation of motion

R0a(Ba) ≡ ∂a∂
aϕ = 0

=⇒ Recover Poisson eq. 2

• Geodesic equation for this connection =⇒ Newtonian force eq. 1

Conclusion
Newton-Cartan geometry encodes Newtonian gravity

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 21 / 25



Gauging of Bargmann Algebra

Galilean Gravity

• Only non-zero boost connection

ω a
0 (x) = −∂aϕ(x)

• Impose equation of motion

R0a(Ba) ≡ ∂a∂
aϕ = 0

=⇒ Recover Poisson eq. 2
• Geodesic equation for this connection =⇒ Newtonian force eq. 1

Conclusion
Newton-Cartan geometry encodes Newtonian gravity

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 21 / 25



Gauging of Bargmann Algebra

Galilean Gravity

• Only non-zero boost connection

ω a
0 (x) = −∂aϕ(x)

• Impose equation of motion

R0a(Ba) ≡ ∂a∂
aϕ = 0

=⇒ Recover Poisson eq. 2
• Geodesic equation for this connection =⇒ Newtonian force eq. 1

Conclusion
Newton-Cartan geometry encodes Newtonian gravity

Julian Kupka Non-relativistic Geometry And Why You Might Care15.11.2023 21 / 25



Null Reductions

Scherk-Schwarz Reductions

• Basis of dimensional reduction: Md+1 = Md × S(1)

• Adapted coordinates (x, z)
• Scherk-Schwarz ansatz: Global symmetry g(z) ∈ G allows for

ϕ(x, z) = g(z)(ψ(x)) (3)
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Null Reductions

Flat Null Reduction

• Choose lightcone coordinates (x+, x−, xa), a = 1, . . . , d − 1

=⇒ Minkowski metric η+− = −1, ηab = δab
• Assume x+ compactified null direction and ansatz eq. 3 with

U(1)-symmetry

ϕ(x, x+, x−) = g(x+)(ψ(x, x−)) = e−imx+ψ(x, x−),

with m ∈ R
• ϕ is a massless Klein-Gordon scalar

□d+1ϕ = ∆dϕ− 2∂+∂−ϕ = 0

• Renaming x− ≡ t, we find NR Schrödinger equation for ψ

i∂tψ(x, t) = − 1
2m∆xψ(x, t)
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Null Reductions

Non-flat Null Reduction
• Assume null Killing vector χ̂ in d + 1 dimensions

• Adapted coordinates (xµ̂) = (xµ, v) s.t. ∂v = χ̂
• Write vielbein index with null directions Â = (a,+,−),

a = 1, . . . d − 1
• Vielbeine can be written as Newton-Cartan fields

(E A
µ̂ ) =

a − +( )
µ e a

µ τµ mµ

v 0 0 1

• with NR variations
δτµ = Lξτµ

δe a
µ = Lξe a

µ + λa
be b

µ + λaτµ

δmµ = Lξmµ + ∂µσ + λae a
µ
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Conclusion

Conclusion

• Newton-Cartan geometry appears as “geometry perpendicular to
null direction”

• Includes null horizons of black holes
• Solutions of SUGRA/string theory such as pp-wave or

fundamental NS string
• Gives interpretation for compactified null directions
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