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Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme I

Perturbative quantum field theory Homotopy algebraic perspective

classical BV action S metric L8-algebra LS

tree-level scattering amplitude for S minimal model for LS

choice of gauge fixing embedding of minimal model into LS

integrating out fields homotopy transfer to smaller L8-algebra

semi-classical equivalence S „ S̃ quasi-isomorphism LS – LS̃

Feynman diagram expansion homological perturbation lemma

Berends–Giele recursion relation homological geometric series

special properties of amplitudes homotopy algebraic refinement of L8-algebra LS

colour-stripping of amplitudes factorisation LS – g b C with C a C8-algebra

colour–kinematics duality the C8-algebra is a BV⌅8-algebra B

manifest colour–kinematics duality LS – g b B with B a BV⌅-algebra

double copy tensor product of metric BV⌅-algebras

2














































































Introduction: theme II

gµ⌫ Aµ
a A⌫

b

• Is gravity the double copy of the other fundamental forces of Nature?
[Feynman; Papini; Kawai, Lewellen, Tye; Berends, Giele, Kuijf; Bern, Dixon, Dunbar, Perelstein ,

Rozowsky. . . ]

• Renaissance: Bern–Carrasco–Johansson Colour–Kinematics (CK) duality
conjecture and double copy of gauge theory and gravity scattering amplitudes
[Bern, Carrasco, Johansson ’08, ’10; Bern, Dennen, Huang, Kiermaier ’10]
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Punch line I

Colour–kinematics duality: mysterious property of scattering amplitudes

Aµ
a

Conventional (possibly anomalous) symmetry of BV/BRST action with kinematic
(homotopy) Lie algebra derived from underlying (homotopy) BV⌅-algebra

[Borsten, Jurčo, Kim, Macrelli, Saemann, Wolf (BJKMSW) ‘20, ‘21, ‘22]
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Punch line II

Assuming colour-kinematics duality we can double copy scattering amplitudes

“gravity “ gauge ˆ gauge2

Action double copy and tensor product of BV⌅-algebras: gravitational L8-algebra

[BJKMSW ‘20, ‘23; see also Bonezzi, Chiaffrino, Díaz–Jaramillo, and Hohm ’23]
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Corollaries

Closed-form BV/BRST actions that manifest/establish colour-kinematics duality up to
possible colour-kinematics duality anomalies [BJKMSW ‘22, ‘23]:

• Self-dual (super) Yang–Mills theories in D “ 4 (twistors, susy ñ anomaly free)

• (Super) Yang–Mills theories in all dimensions (twistors or pure spinors)

• M2-brane world–volume theories (pure spinors)

New double copy actions:

• Bi-form gravity in D “ 2 ` 1 (from double copy of Chern-Simons)

• Cubic pure spinor action for supergravity (from double copy of super Yang–Mills)
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The Plan For Today

1. Homotopy algebras, quantum field theory and scattering amplitudes
Batalin–Vilkovisky formalism, homotopy Lie algebras and minimal models

2. Colour-kinematics duality and the double copy
Hidden property of gluon amplitudes: “gravity “ gauge ˆ gauge”

3. Manifesting colour-kinematics duality in the Batalin–Vilkovisky formalism
Colour-kinematics duality as conventional (possibly anomalous) symmetry

4. Colour-kinematics duality, double copy and (homotopy) BVl algebras
Confluence and conclusion: colour-kinematics was always there (up to homotopy!)

5. Examples: Chern-Simons, (self-dual) super Yang–Mills and M2-branes
New formulations: simple proofs of tree-level colour-kinematics duality
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Homotopy algebras, quantum field

theory and scattering amplitudes














































































Homotopy algebras

Consider a cochain complex pC‚
, dq

¨ ¨ ¨ C
i

C
i`1

C
i`2 ¨ ¨ ¨d d dd

d2 “ 0 with some compatible algebraic structure (“mulitplication” map m)

m : Ci ˆ C
j Ñ C

i`j ; px, yq fiÑ mpx, yq

dmpx, yq “ mpdx, yq ` p´qxmpx, dyq

Example: Hodge–de Rham complex ⌦‚pMq of i-forms with exterior derivative

mpAi, Ajq “ Ai ^ Aj “ p´qijAj ^ Ai, dpAi ^ Ajq “ dAi ^ Aj ` p´qiAi ^ dAj

is a differential graded commutative algebra (dgca)

8
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Homotopy algebras

Given a morphism ' : pC‚
, dq Ñ pC̃‚

, d̃q

¨ ¨ ¨ C
i

C
i`1

C
i`2 ¨ ¨ ¨

¨ ¨ ¨ C̃
i

C̃
i`1

C̃
i`2 ¨ ¨ ¨

d d dd

d̃ d̃d̃ d̃

'i`2'i`1'i

Q: Can the algebraic structure m on pC‚
, dq also be transferred to an algebraic

structure m̃ on pC̃‚
, d̃q?

A: Yes, if we allow for a richer homotopy algebraic structure

9














































































Homotopy algebras

Given a morphism ' : pC‚
, dq Ñ pC̃‚

, d̃q

¨ ¨ ¨ C
i

C
i`1

C
i`2 ¨ ¨ ¨

¨ ¨ ¨ C̃
i

C̃
i`1

C̃
i`2 ¨ ¨ ¨

d d dd

d̃ d̃d̃ d̃

'i`2'i`1'i

Q: Can the algebraic structure m on pC‚
, dq also be transferred to an algebraic

structure m̃ on pC̃‚
, d̃q?

A: Yes, if we allow for a richer homotopy algebraic structure

9














































































Homotopy algebras

Algebraic identities (e.g. associativity, commutativity or Jacobi) hold only up to
cochain homotopies

Ñ tower of higher products dpxq “ m1pxq,m2px, yq,m3px, y, zq, . . .
mn : Ci1 ˆ C

i2 ˆ ¨ ¨ ¨ ˆ C
in Ñ C

i1`i2`¨¨¨in´n`2

Informally: generalise familiar algebras to include higher products satisfying higher
relations up to homotopies:

Associative algebras Ñ homotopy associative A8-algebras [Stasheff ‘63]

Commutative algebras Ñ homotopy commutative C8-algebras [Kadeishvili ‘82]

Lie algebras Ñ homotopy Lie L8-algebras [Zwiebach ’93; Hinich, Schechtman ’93]
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Homotopy Lie algebras

Lie algebra L8-algebra

Vector space Graded vector space

g “ V0 L “ À
n Vn

Bracket Higher brackets

µ2 “ r´,´s µ1 “ r´s, µ2 “ r´,´s, µ3 “ r´,´,´s, . . .
Relations Homotopy relations

Antisymmetry ` Jacobi Graded antisymmetry ` homotopy Jacobi

Example: Semistrict Lie 2-algebra is a 2-term L8-algebra L – V´1 ‘ V0 with

Differential µ1 “ r´s; Lie bracket µ2 “ r´,´s; Jacobiator µ3 “ r´,´,´s.
rrx, ys, zs ` p´1qxpy`zqrry, zs, xs ` p´1qypx`zqrrx, zs, ys “ ´rrx, y, zss

Integrate to Lie groups Integrate to 8-Lie Groups

Generalised symmetries increasingly prevalent in CMT, TQFT, QI, AdS/CFT . . .

[Das,Gregory,Iqbal ‘21; Del Zotto,García Etxebarria,Schafer-Nameki ‘22; Etxebarria,Iqbal ‘22; Bhardwaj,

Bullimore,Ferrari,Schafer-Nameki ‘22; Bartsch, Bullimore,Ferrari,Pearson ‘22; Bartsch,Bullimore,Grigoletto ’23. . . ]
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Lie 2-Group

2-arrows form a group under horizontal composition

‚ ‚ ‚ “ ‚ ‚

g1 g1
1

g1
2

g1g
1
1

g2g
1
2

g2

�˝�1�1�

2-arrows form a groupoid under vertical composition

‚ ‚ “ ‚ ‚

g

g2

g1

g

g2

�

�1
�1�

Interchange law: horizontal and vertical composition are coherent

‚ ‚ ‚

Lie 2-group Ñ Lie 2-algebra Ñ strict 2-term L8-algebra
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Homotopy Lie algebras: higher products and relations

Operadic definition: L8-algebras are given degree one differential derivations on
Lie!ppV r1sq˚q for some graded vector space V

Operads are the appropriate mathematical arena for constructing homotopy algebras

Unpacking this definition: an L8-algebra L is a graded vector space V – À
i Vi

together with graded anti-symmetric i-linear maps

µi : V ˆ ¨ ¨ ¨ ˆ V Ñ V

of degree 2 ´ i that satisfy the homotopy Jacobi identities
ÿ

i “ j ` k

� P Shpj, k; iq

p´1qk�p�;v1,...,viqµk`1pµjpv�p1q, . . . , v�pjqq, v�pj`1q, . . . , v�piqq “ 0

13
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Homotopy Lie algebras: higher products and relations

The first three homotopy Jacobi identities are

µ1pµ1pv1qq “ 0

µ1pµ2pv1, v2qq “ µ2pµ1pv1q, v2q ` p´1q|v1|
µ2pv1, µ1pv2qq

µ2pµ2pv1, v2q, v3q ` p´1q|v1| |v2|
µ2pv2, µ2pv1, v3qq ´ µ2pv1, µ2pv2, v3qq

“ µ1pµ3pv1, v2, v3qq ` µ3pµ1pv1q, v2, v3q ` p´1q|v1|
µ3pv1, µ1pv2q, v3q

` p´1q|v1|`|v2|
µ3pv1, v2, µ1pv3qq

• The unary product µ1 is a differential and a derivation with respect to the binary
product µ2

• The ternary product µ3 captures the failure of the binary product µ2 to satisfy
the standard Jacobi identity

14














































































Homotopy Lie algebras: quasi-isomorhisms

Morphisms of L8-algebras are families of i-linear maps

� : L Ñ L̃, �i : L ˆ ¨ ¨ ¨ ˆ L Ñ L̃

that are functorial, e.g. �1 ˝ µ1 “ µ̃1 ˝ �1

Quasi-isomorphisms are morphisms that induce isomorphisms on the µ1-cohomologies

�1 : H‚
µ1

pV q Ñ̃ H
‚
µ̃1

pṼ q

15
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Homotopy Lie algebras: structure theorems

Strictification (retification) theorem:

Every L is quasi-isomorphic to an L̃ with µ̃i “ 0 for all i ° 2

Minimal model theorem:

Every L is quasi-isomorphic to an L̃ – pH‚
µ1

pLq, µ̃iq with µ̃1 “ 0

Special deformation retract of complexes

pV, µ1q pH‚
µ1

pV q, µ̃1 “ 0qh
p

e
, 1 “ µ1h ` hµ1 ` e ˝ p

Homological perturbation lemma (we can perturb the differential to include nonlinear
terms) determines higher products of minimal model recursively from �1 “ e

µ̃1pṽq “ 0

µ̃2pṽ1, ṽ2q “ phµ2pepṽ1q, epṽ2qq
µ̃3pṽ1, ṽ2, ṽ3q „ phµ3pepṽ1q, epṽ2q, epṽ2qq ` phµ2pphµ2pepṽ1q, epṽ2qq, epṽ3qq ` ¨ ¨ ¨

16
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Homotopy Lie algebras: structure theorems

Strictification (retification) theorem:

Every L is quasi-isomorphic to an L̃ with µ̃i “ 0 for all i ° 2
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Homotopy Lie algebras and the BV formalism

Given differential graded Lie algebra pg, dq with inner product (cf. Cartan-Killing form)

xx, dyy “ p´q1`x`y`xyxy, dxy, xx, ry, zsy “ p´qzpx`yqxz, rx, ysy

f “ da ` 1
2 ra, as “ 0, SMC “ 1

2 xa, day ` 1
3! xa, ra, asy

Covariant derivative, Bianchi identity and gauge transformations:

Dx “ dx ` ra, xs, Df “ 0, �ca “ Dc

Given L8-algebra pL, µiq with cyclic structure

xx1, µipx2, . . . xi`1qy “ p´qi`ipx1`xi`1q`xi`1
∞i

j“1 xj xxi`1, µipx1, . . . xiqy

F “
ÿ

k

1
k!µkpa, a, . . . , aq “ 0, ShMC “

ÿ

k

1
pk`1q! xa, µkpa, a, . . . , aqy

Covariant derivative, Bianchi identity and gauge transformations:

Dx “
ÿ

k

p´1qk
k! µk`1px, a, . . . , aq, DF “ 0, �ca “ Dc
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Homotopy Lie algebras and the BV formalism

Every Batalin–Vilkovisky Lagrangian field theory is given by a cyclic L8-algebra

• Yang-Mills theory L
YM “ pV YM

, µiq
V

YM
0 ‘ V

YM
1 ‘ V

YM
2 ‘ V

YM
3

c
µ1“d›Ñ A

d:d›Ñ A
` d:

›Ñ c
`

b
Id›Ñ c̄

c̄
` ´Id›Ñ b

`

• Homotopy Maurer-Cartan action of superfield c ` A ` A
` ` c

`:

S
YM
BV “ tr

ª
A ^ ‹ d

:
dA ` A ^ ‹µ2pA,Aq ` ¨ ¨ ¨

where xA,A
`y “ tr

≥
A ^ ‹A` and µ1pAq “ d

:
dA

• Colour-stripping: L
YM “ g b C

YM – Yang–Mills C8-algebra

• Physical equivalence (field redefinitions etc): L8 quasi-isomorphisms
See [Jurčo-Raspollini-Saemann-Wolf ‘18; Jurčo-Macrelli-Saemann-Wolf ‘19; BJKMSW ‘20 ‘23]
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Homotopy Lie algebras and scattering amplitudes

Now consider the minimal model pV theory
, µiq – pH‚

µ1
pV theoryq, µ̃1 “ 0, µ̃iq

pV, µ1q pH‚
µ1

pV q, µ̃1 “ 0qh
p

e
, 1 “ µ1h ` hµ1 `⇧

ñ h “ propergator

Homological perturbation lemma yields higher brackets as Feynman diagram expansion

µ̃2pṽ1, ṽ2q “ phµ2pepṽ1q, epṽ2qq

µ̃3pṽ1, ṽ2, ṽ3q „ phµ3pepṽ1q, epṽ2q, epṽ2qq ` phµ2pphµ2pepṽ1q, epṽ2qq, epṽ3qq ` ¨ ¨ ¨
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Homotopy Lie algebras and scattering amplitudes

Cyclic structure gives tree-level amplitudes

A
tree
n pṽ1, ṽ2, . . . ṽnq “ xṽ1, µ̃n´1pṽ2, . . . , ṽnqy

Actions and amplitudes are unified as quasi-isomorphic L8-algebras
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Colour-kinematics duality and the

double copy














































































Colour-kinematics duality

Amplitude for gluons to scatter schematically:

Colour numerators ci „ fab
c
fcd

e Kinematic numerators ni „ "µp
µ ` ¨ ¨ ¨

A
n,L
YM “

ÿ

iPcubic diag

1

Si

ª

L

cini

di

Bern-Carrasco-Johansson colour-kinematics duality conjecture 2008:

ci ` cj ` ck “ 0 ñ ni ` nj ` nk “ 0

Proven at tree level [Stieberger ’09; Bjerrum, Bohr, Damgaard, Vanhove ’09; Du, Teng ’16; Bridges, Mafra

’19; Mizera ’19; Reiterer ’19. . . ]

Conjectured at loop level with highly non-trivial examples [Bern, Carrasco, Johansson ’08 ’10;

Carrasco, Johansson ’11; Bern, Davies, Dennen, Huang, Nohle ’13; Bern, Davies, Dennen ’14. . . ]
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Colour-kinematics duality

Assuming colour-kinematics duality is realised, gravity comes for free:

Aglouns „
ÿ ª

cini

di
double copy kinematics

ci ›Ñ ni

Agravitons „
ÿ ª

nini

di

[Bern, Carrasco, Johansson ’08, ’10; Bern, Dennen, Huang, Kiermaier ’10]

‘Gluons for (almost) nothing, gravitons for free’ JJ Carrasco
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Manifesting colour-kinematics duality

in the Batalin–Vilkovisky formalism



Manifest colour-kinematics duality of tree-level physical S-matrix

There is a Yang–Mills action such that the Feynman diagrams yield amplitudes
manifesting colour-kinematics duality for tree-level amplitudes:

AlA ` BAAA ` l
l
AAAA ` B3

l2
AAAAA ` ¨ ¨ ¨

[Bern, Dennen, Huang, Kiermaier ’10; Tolotti, Weinzierl ’13]

22
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Manifest colour-kinematics duality of tree-level physical S-matrix

This can be strictified to have only cubic interactions through infinite tower of
auxiliaries [Bern, Dennen, Huang, Kiermaier ‘10; Tolotti, Weinzierl ’13; BJKMSW ’21]

S
YM
on-shell CK “ tr

ª
d
D
x
1
2Aµ lA

µ ` 1
2gBµA⌫ rAµ

, A
⌫ s

` 1
2B

µ⌫ lBµ⌫ ´ gpBµA⌫ ` 1?
2

B
Bµ⌫qrAµ

, A
⌫ s

` C
µ⌫ l C̄µ⌫ ` C

µ⌫ l C̄µ⌫ ` C
µ⌫� l C̄µ⌫� `

` gC
µ⌫ rAµ, A⌫ s ` gBµCµ⌫rA⌫ , As ´ g

2 BµCµ⌫�rBr⌫As, A�s
` gC̄

µ⌫
`
1
2 rB

C̄�µ, B�
A⌫ s ` rB

C̄�⌫µ, A
�s˘ ` ¨ ¨ ¨

Purely cubic colour-kinematics duality manifesting Feynman diagrams:

A
n,0
YM “

ÿ

i

cini

di
s.t. ci ` cj ` ck “ 0 ñ ni ` nj ` nk “ 0

23



Manifest colour-kinematics duality of tree-level BRST extended S-matrix

To lift to loop-level we should include off-shell unphysical/ghost modes in the external
states so that we can glue trees into loops

Include off-shell unphysical/ghost modes in the external states, the full
BRST-extended state space

pAµ
a
, b

a
, c

a
, c̄

aq

[Anastasiou, LB, Duff, Hughes, Nagy, Zoccali ’14 ’18; LB, Nagy ‘20; BJKMSW ’20, ’21, ’22]
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Manifest colour-kinematics duality of tree-level BRST extended S-matrix

Relax transversality pi ¨ "i �“ 0 for external states ñ

colour-kinematics duality fails

But: we can always compensate for these failures with new vertices that are a gauge
choice and its BRST ghost completion [BJKMSW ’20]

S
YM
BRST-extended CK “ S

YM
on-shell CK `

ª
d
D
x
1
2 balb

a ´ c̄alc
a

´ K
µ
1alK̄

1a
µ ´ K

µ
2alK̄

2a
µ ´ gfabcc̄

aBµpAb
µc

cq
´ 1

2B
µ⌫
a lB

a
µ⌫ ` gfabc

´
BµAa

⌫ ` 1?
2

B
B

a
µ⌫

¯
A

µb
A

⌫c

´ gfabc

!
K

aµ
1 pB⌫

A
b
µqAc

⌫ ` rpB
A

a
qAbµ ` c̄

aBµ
c
bsK̄1c

µ

)

` gfabc

!
K

aµ
2

”
pB⌫BµcbqAc

⌫ ` pB⌫
A

b
µqB⌫cc

ı
` c̄

a
A

bµ
K̄

2c
µ

)
` ¨ ¨ ¨

25



Manifest colour-kinematics duality of tree-level BRST extended S-matrix

Relax transversality pi ¨ "i �“ 0 for external states ñ

colour-kinematics duality fails

But: we can always compensate for these failures with new vertices that are a gauge
choice and its BRST ghost completion [BJKMSW ’20]

S
YM
BRST-extended CK “ S

YM
on-shell CK `

ª
d
D
x
1
2 balb

a ´ c̄alc
a

´ K
µ
1alK̄

1a
µ ´ K

µ
2alK̄

2a
µ ´ gfabcc̄

aBµpAb
µc

cq
´ 1

2B
µ⌫
a lB

a
µ⌫ ` gfabc

´
BµAa

⌫ ` 1?
2

B
B

a
µ⌫

¯
A

µb
A

⌫c

´ gfabc

!
K

aµ
1 pB⌫

A
b
µqAc

⌫ ` rpB
A

a
qAbµ ` c̄

aBµ
c
bsK̄1c

µ

)

` gfabc

!
K

aµ
2

”
pB⌫BµcbqAc

⌫ ` pB⌫
A

b
µqB⌫cc

ı
` c̄

a
A

bµ
K̄

2c
µ

)
` ¨ ¨ ¨

25



Manifest colour-kinematics duality of tree-level BRST extended S-matrix

Relax transversality pi ¨ "i �“ 0 for external states ñ

colour-kinematics duality fails

But: we can always compensate for these failures with new vertices that are a gauge
choice and its BRST ghost completion [BJKMSW ’20]

S
YM
BRST-extended CK “ S

YM
on-shell CK `

ª
d
D
x
1
2 balb

a ´ c̄alc
a

´ K
µ
1alK̄

1a
µ ´ K

µ
2alK̄

2a
µ ´ gfabcc̄

aBµpAb
µc

cq
´ 1

2B
µ⌫
a lB

a
µ⌫ ` gfabc

´
BµAa

⌫ ` 1?
2

B
B

a
µ⌫

¯
A

µb
A

⌫c

´ gfabc

!
K

aµ
1 pB⌫

A
b
µqAc

⌫ ` rpB
A

a
qAbµ ` c̄

aBµ
c
bsK̄1c

µ

)

` gfabc

!
K

aµ
2

”
pB⌫BµcbqAc

⌫ ` pB⌫
A

b
µqB⌫cc

ı
` c̄

a
A

bµ
K̄

2c
µ

)
` ¨ ¨ ¨

25



Manifest colour-kinematics duality of tree-level BRST extended S-matrix

Relax transversality pi ¨ "i �“ 0 for external states ñ

colour-kinematics duality fails

But: we can always compensate for these failures with new vertices that are a gauge
choice and its BRST ghost completion [BJKMSW ’20]

Proof is inductive and constructive:

• Assume action manifesting BRST colour-kinematics duality up to n-points

• There exists interaction vertices of polynomial degree n ` 1 that are

identically zero or a gauge-fixing term or it ghost completion

enforcing colour-kinematics duality at n ` 1-points

• Strictifying yields cubic actions with tower of auxiliary fields

• Note, arguments apply to any theory with tree-level physical S-matrix
colour-kinematics duality ñ

D on-shell BRST-extended “amplitudes” obeying colour-kinematics duality

26
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Manifest colour-kinematics duality of off-shell BRST action

Off-shell momenta p
2 �“ 0: resulting CK duality violations are compensated by vertices

fl� generated by generically non-local field redefinitions:

� fiÑ � ` fp�q, �l� fiÑ �l� ` fl� ` ¨ ¨ ¨

Cubic Feynman rules yield colour-kinematics duality manifesting loop amplitude
integrands automatically! [BJKMSW ‘21]

We’re finished, aren’t we. . .

. . . Jacobian determinants Ñ counterterms ensuring unitarity

det

ˆ
` �fp�q

��

˙
“

ª
D�̄D� e

i
~

≥ˆ
�̄I�

I`�̄I
�fI

��J �J
˙

No reason to think such terms will preserve CK duality: in this sense, our off-shell CK
duality may be anomalous

Pure Yang–Mills: two-loop colour-kinematics duality with local lorentz-covariant cubic
Feynman rule compatible numerators is impossible [Bern, Davies, Nohle ’15]

We now understand this failure as a colour-kinematics duality anomaly [BJKMSW ‘21]
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Colour-kinematics duality as a conventional (possibly anomalous) symmetry

CK duality can be realised as an infinite dimensional anomalous symmetry of
Yang–Mills BRST action [BJKMSW ‘20, ‘21, ‘22]

CijcabA
ialA

jb ` FijkfabcA
ia
A

jb
A

kc

cab “ cpabq fabc “ frabcs capbfa
cqd “ 0 frab|dfd

cse “ 0

Cij “ Cpijq Fijk “ Frijks CipjF i
kql “ 0 Frij|lF l

|ksm “ 0

• Colour-kinematics duality is a symmetry of the action

• Fijk are structure constants of some kinematic Lie algebra

• Loop integrands (from Feynman rules) are colour–kinematics dual, but. . .

• . . . there may be a colour–kinematics anomaly due to Jacobian

• Agrees with constraints from 2-loop Yang–Mills amplitudes [Bern, Davies, Nohle, ‘15]
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Double copy

BRST/BV action double copy [LB, Nagy ‘20; BJKMSW ’20; ’21, ‘22, ‘23]

CijcabA
ialA

ja ` FijkfabcA
ia
A

jb
A

kc Ñ CijC̃ı̃|̃A
iı̃lA

j|̃ ` FijkF̃ı̃|̃k̃A
iı̃
A

j|̃
A

kk̃

Parent Yang–Mills theories Daughter gravity theory

S
YM
BV b S

YM
BV S

gravity
BV “

ª
d
D
x

?´gR ` ¨ ¨ ¨

Meiotic reproduction Einstein-Hilbert action ` axion dilaton

Pertubative quantum gravity ` axion-dilaton is the double copy of Yang–Mills (but
counter terms for unitarity required)! [BJKMSW ’20]
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Questions

Okay, but. . .

• Proof is constructive and inductive: no theoretical understanding/control over
higher vertices or the set of auxiliary fields with cubic interactions

• No closed form of colour-kinematics duality manifesting action

• No clue (generically) about the kinematic Lie algebra

• May need non-local field redefinitions ñ colour-kinematics duality anomaly

• Double copy is mathematically opaque

So we’d like. . .

• a clear mathematical characterisation of higher vertices

• a closed form colour-kinematics duality manifesting action

• to avoid the need for non-local field redefinitions ñ perfect all-loop
colour-kinematics duality

• an understanding of kinematic Lie algebra

• a tensor product of C8-algebras that generates double copy
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Colour-kinematics duality, double

copy and (homotopy) BV
l

algebras



A clear mathematical characterisation of higher vertices: BV
⌅
8-algebras

Reiterer ’18: Colour-kinematics duality of physical tree-level S-matrix is equivalent to
a BV⌅8-algebra (deformation of BV8-algebras of [Galvez–Carrillo, Tonks, Vallette ‘09])

Theory with kinematic Lie algebra ô C “ B a BV⌅8-algebra [BJKMSW ‘21, ‘22]

L “ g b C “ g b B pC is colour-stripped C8-algebraq

Higher products rough split into three types of vertices we introduced:

m
0
i Colour-stripped vertices of gauge-fixed action for BRST colour-kinematics duality

m
0
i,j Tolotti-Weinzerl corrections for tree on-shell colour-kinematics duality

m
0
i,j,k Field red. vertices correcting for off-shell colour-kinematics duality

“homotopy Jacobi relations ô colour-kinematics duality ”

See also [Bonezzi, Chiaffrino, Díaz–Jaramillo, and Hohm ’23]
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Perfect colour-kinematics duality

A strict BV⌅-algebra B is dgca pV, d,mq with b : V Ñ V such that

b2 “ 0, ⌅ :“ rd, bs “ d ˝ b ` b ˝ d

and b is second order w.r.t mp´,´q so that

rx, ys “ bmpx, yq ´ mpbx, yq ´ p´1qxmpx, byq

is a (shifted) Lie bracket: the kinematic Lie algebra
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Perfect colour-kinematics duality

h “ idg b b

⌅
ñ idL ´⇧ “ d ˝ h ` h ˝ d “ d ˝ b ` b ˝ d “ ⌅

�0

⌅´1b

m2

⌅´1b ⌅´1b

m2 m2

�1 �2 �3 �4

Ñ

�0

x´,´y

m2

⌅´1 ⌅´1

bm2 bm2

�1 �2 �3 �4

x�0,mpT1, bmpT2, T3qqy ` x�0,mpT2, bm2pT3, T1qqy ` x�0,mpT3, bmpT1, T2qqy “ 0

bmp´,´q “ r´,´s since “fields “ impbq “ kerpbq” post gauge-fixing
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The double copy as restricted tensor product

CijcabA
ialA

ja ` FijkfabcA
ia
A

jb
A

kc Ñ CijC̃ı̃|̃A
iı̃lA

j|̃ ` FijkF̃ı̃|̃k̃A
iı̃
A

j|̃
A

kk̃

B :“ BL b BR

but the tensor product of differential graded commutative algebras is again a
differential graded commutative algebra (i.e. not an L8-algebra as required)

mpa b x, b b yq “ mLpa, bq b mRpx, yq

Let H be a restrictedly tensorable cocommutative Hopf algebra. Furthermore, let
BL “ pBL, dL,mL, bLq and BR “ pBR, dR,mR, bRq be two gauge-fixed
BV⌅-algebras over H with ⌅L “ ⌅R “ ⌅ P H and let B̂ “ pB̂, d̂, m̂2, b̂´q be the
restricted tensor product over H. The syngamy of BL and BR is the restricted
kinematic dg Lie algebra Kin

0pB̂q

b “ bL b id ` id b bR and µ2 “ r´,´sL b mR ` mL b r´,´sR

See also [Bonezzi, Chiaffrino, Díaz–Jaramillo, and Hohm ’23]
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kinematic dg Lie algebra Kin

0pB̂q

b “ bL b id ` id b bR and µ2 “ r´,´sL b mR ` mL b r´,´sR

See also [Bonezzi, Chiaffrino, Díaz–Jaramillo, and Hohm ’23]

34



Examples: Chern-Simons theory,

(self-dual) super Yang–Mills theory

and M2-brane models



The Chern-Simons paradigm

Chern–Simons theory has off–shell CK duality ñ Chern–Simons has a BVl-algebra

[Ben–Shahar, Johansson ’21; BJKMSW ’22]

L
CS “ ⌦0pMq b g ⌦1pMq b g ⌦2pMq b g ⌦3pMq b g

c A A
`

c
`

µ1“dbidg dbidg dbidg

S
CS
BV “

ª
tr

´
1
2A ^ dA ` 1

3!A ^ rA,As ` A
` ^ pdc ` rA, csq ` 1

2 c
` ^ rc, cs

¯

L
CS “ C

CS b g “ B
CS b g

B
CS “ ⌦0 ⌦1 ⌦2 ⌦3

d d d

d:d:d:

dA “ dA, bA “ d:
A, mpA,Bq “ A ^ B

dd: ` d:d “ l
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The Chern-Simons paradigm

Kinematic Lie algebra given by derived bracket

p´1qpr↵,�s “ ´d:p↵ ^ �q ` d:
↵ ^ � ` p´1qp↵ ^ d:

�

is Schouten–Nijenhuis algebra of totally antisymmetric tensor fields, the natural
Gerstenhaber algebra on three-dimensional Minkowski space [BJKMSW ‘22]

Restrciting to fields yields diffeomorphism algebra identified in [Ben–Shahar, Johansson ’21]

⌅ “ l ñ colour-kinematics duality to all points and loops

Look for Chern-Simons-type actions!
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Holomorphic Chern-Simons theory on twistor space

Super self-dual Yang–Mills theory is equivalent to holomorphic Chern–Simons theory
on super twistor space Z – R4|8 ˆ CP 1 with local coordinates pxµ

, ⌘
i
,�

↵q

ShCS “
ª
⌦^ tr

´
1
2A^ B̄redA` 1

3!A^ rA,As `A
` ^ pB̄redc` rA, csq ` 1

2 c
` ^ rc, cs

¯
,

B̄red “ ê
↵
Ê↵ ` ê

0
Ê0, b “ ´ 4

|�|2 "
↵�

◆E↵ ◆Ê�
Bred ` 2"↵�

◆Ê↵
◆Ê�

ê
0^

B̄redb ` bB̄red “ l 4

• “Kaluza–Klein” expansion on CP 1 gives infinite tower of auxiliary fields required
for colour-kinematics duality

A
apx, ⌘,�q „ Apx, ⌘qa ` Apx, ⌘q↵a

�↵ ` Apx, ⌘q↵�a
�↵�� ` ¨ ¨ ¨ Ø A

ia

• Integrate out ñ BVl
8-algebra (cf. [Bonezzi, Diaz–Jaramillo, Nagy ‘23])

• Manifest kinematic Lie algebra and all-point all-loop order colour-kinematics
duality for maximally supersymmetric case (but only 1-loop non-trivial!)

• Gauging away ◆Ê0
A reproduces the kinematic Lie algebra of area-preserving

diffeomorphisms on C2 identified in [Monteiro, O’Connell ‘11]

(cf. [Bonezzi, Diaz–Jaramillo, Nagy ‘23])
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◆Ê�

ê
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Holomorphic Chern-Simons theory on ambitwistor space

Super Yang–Mills theory is equivalent to holomorphic Chern–Simons theory on the CR
ambitwistor space [Movshev ‘04; Mason, Skinner ’05]

⌅ “ B̄CRb ` bB̄CR “ l 4 ` 8
µ

p↵
µ̂
�q
�

p 9↵
�̂

9�q

|�|2|µ|2
B

Bx↵ 9↵
B

Bx� 9�

• Kinematic Lie algebra: yes

• Colour-kinematics duality: no (at least not obviously)

1

⌅
“ 1

k2

ˆ
⌘
MN ´ K

MN
µ⌫

k
µ
k
⌫

k2
` K

MP
µ⌫ KP

N
⇢�

k
µ
k
⌫
k
⇢
k
�

k4
´ ¨ ¨ ¨

˙

• Comparing to standard R⇠-gauge analysis of Yang–Mills, tempting to conjecture
twistorial Ward identities kill spurious K contributions ñ all-loop
colour-kinematics duality (proving hard to establish or rule out)

• Can only work for supersymmetric case: twistorial anomaly for pure Yang-Mills

• Agrees with expectations from potential Jacobian counter term colour-kinematics
duality anomalies
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Pure spinors and super Yang-Mills

Super Yang–Mills theory as a pure spinor theory over pxµ
, ✓,�, �̄, d�̄q:

ª
⌦tr

´
 Q ` 1

3   
¯

ñ tree-level colour–kinematics duality, but b-ghost divergences obstruct loop-level

[Ben–Shahar, Guillum ‘21; BJKMSW ‘23]

Cubic double copy action for supergravity

S :“
ª
⌦10dN“1 ^ 10|16 ⌦10dN“1x , pQ b id ` id b Qq ` 1

3 r , syKin0pB̂q

[BJKMSW ‘23]
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Pure spinors and M2-brane world-volume theories

Conjecture: Bagger–Lambert–Gustavsson (BLG) theory has 3-Lie algebra
colour-kinematics duality [Bargheer, He, McLoughlin ‘12; Huang, Johansson ’12]

BV⌅-algebras can be extended to BV⌅-modules (“matter” fields)

SBLG “
ª
⌦BLG

´
x , Q ` 1

3 r , syg ` gmnx�m
, QV �

n ` �nyV
¯

which follow from the pure spinor BLG action of [Cederwall ’08]

ñ tree-level (standard Lie algebra) colour-kinematics duality [BJKMSW ‘23]
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Future directions

A path to proving colour-kinematics duality for super Yang–Mills?

In progress [BJKSW]

Curved backgrounds and classical double copy (beyond perturbation theory?)

Cf. [Lipstein, Nagy ‘23]

String (field) theory

In progress [BJKSW]
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