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Introduction

▶ An open problem in theoretical physics is the relationship
between theories of gravity and theories of particle physics.

▶ The last 50 years have seen various attempts to resolve this
problem: String Theory, Quantum Loop Gravity, etc ...

▶ Though none of these attempts have completely solidified the
relationship between gravity and particle physics, we have
learned a great deal from these investigations.



Particle Physics and Gauge Theories

The standard model of particle physics is described by gauge
theories; quantum field theories which incorporate local symmetries
defined at every point in spacetime.

The most relevant of these theories for us is the theory of quarks,
gluons and the strong nuclear force: Quantum Chromodynamics.

We can also remove the quarks from QCD to receive a non-abelian
gauge theory known as Yang-Mills theory.
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Gravity

▶ Currently, the best theory we have to describe gravity is
general relativity .

▶ Recent experimental results on black holes and gravitational
waves has increased interest in the subject.

▶ Gravity is the only fundamental force that we cannot
comfortably combine with quantum mechanics.

▶ Gravity is an example of a non-renormalisable theory.



Quantum Field Theory and Interactions

Scattering amplitudes in quantum field theory are quantities
related to the probability for an interaction (also known as a
scattering process) between particles to happen.

|f〉|i〉

▶ Number of (external legs) points → Number of arrows going
in and out.

▶ Number of Loops → Number of “self interactions”.



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1

︷ ︸︸ ︷
gm−2+2L

Coupling Constant

∑
i

∫ L∏
l=1

dDℓl
(2π)D

1
Si

cini∏
ij dij

, (1)



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L

Sum over all
distinct

interactions (diagrams)∑
i︸︷︷︸

∫ L∏
l=1

dDℓl
(2π)D

1
Si

cini∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

︷ ︸︸ ︷∫ L∏
l=1

dDℓl
(2π)D

Integral over loop momenta lI

1
Si

cini∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

∫ L∏
l=1

dDℓl
(2π)D

Symmetry Factor
to prevent

loop diagram
overcounting︷︸︸︷

1
Si

cini∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

∫ L∏
l=1

dDℓl
(2π)D

1
Si

Colour Factors︷︸︸︷
ci ni∏

ij dij
,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

∫ L∏
l=1

dDℓl
(2π)D

1
Si

ci

kinematic
numerators︷︸︸︷

ni∏
ij dij

,



Developing a Double Copy for Scattering amplitudes

We can write down (2203.13013) for a Yang-Mills like non-abelian
gauge theory, a scattering amplitude with L loops and m points (in
D dimensions).

A(L)
m = iL−1gm−2+2L∑

i

∫ L∏
l=1

dDℓl
(2π)D

1
Si

cini∏
ij

dij︸ ︷︷ ︸
Internal Lines Propagator

,



BCJ Duality

It turns out the kinematic numerators (ni) can be made to obey
(mirroring the colour factors ci):

ci + cj + ck = 0 (2)
ni + nj + nk = 0 (3)

This has become known as BCJ Duality (0805.3993, 1004.0476).
Importantly, equation (3) implies the existance of structures known
as kinematic algebras!

This allows us to write down relevant scattering amplitudes in
quantum gravity.



Developing a Double Copy for Scattering amplitudes

We can promote gravity to a quantum field theory (ignoring issues
with renormalizability), to write down a scattering amplitude with
L loops and m points:
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Developing a Double Copy for Scattering amplitudes

Comparing both expressions:
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ni ñi∏
ij dij

,



Double Copy for scattering amplitudes

We can turn the gauge theory amplitude into the gravity amplitude
via the following replacements:

M(L)
m = A(L)
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(5)
We then make the choice ni ≡ ñi .

This is known as the Double Copy.



The Classical Double Copy

▶ The double copy can be extended to produce dualities
between exact classical solutions (classical yang-mills and
general relativity).

▶ The first instance of the classical double copy is the so-called
Kerr-Schild Double Copy (1410.0239, 1606.04724).

▶ This relates gauge fields in classical yang mills (Aa
µ) with

exact linearized vacuum solutions to the Einstein equations
(hµν). Where:

gµν = ηµν + κhµν (6)



Kerr-Schild Double Copy

In this case, our gauge and graviton fields are constructed by
combining some selected vector kµ (known as Kerr-Schild vector)
with some harmonic scalar ϕ ≡ ϕ(x):

Aa
µ = kµϕca (7)

where ca is some constant color vector that ”dresses” ϕ.

hµν = kµkνϕ (8)

Where our Kerr-Schild vectors are constrained by the following:

kµkµ = 0, kν∂
νkµ = 0. (9)



Kerr-Schild Operator Formalism

The Kerr-Schild Double Copy can be expressed in terms of
differential operators k̂µ (known as Kerr-Schild operators) acting
on some harmonic scalar ϕ ≡ ϕ(x):

Aµ = k̂µϕ, (10)

hµν = k̂µk̂νϕ (11)

Where our operators are constrained by the following:

k̂2 = 0, ∂ · k̂ = 0. (12)



The Kerr-Schild Double Copy

A classic example of the Kerr-Schild double copy in action is the
relationship between the Schwarzschild solution and the Coulomb

Solution:



What are Kinematic Algebras ?

▶ Gauge theories are now known to possess mysterious
structures known as Kinematic Algebras.

▶ One downside to BCJ duality currently is that is defined order
by order in perturbation theory.

▶ We currently believe that kinematics algebras are in general
not Lie algebras, but some more general mathematical
structures such as strong homotopy or L∞ algebras. (Reiterer;
then Borsten, Jurco, Kim, Macrelli, Saemann, Wolf; Bonezzi, Chiaffrino,
Diaz-Jaramilo, Hohm, Plefka).

▶ These are examples of so-called ”higher” bracket theories,
which require a higher-order generalisation of the Lie bracket
to satisfy the Jacobi identity.



What are Kinematic Algebras ?

▶ The first examples of Lie algebra based kinematic algebras
were found for the cases of (Monteiro, O’Connell, Fu, Krasnov,
Ben-Shahar, Johansson) :

1. Self-Dual Yang-Mills theory in lightcone gauge (in the form of
Area Preserving Diffeomorphisms)

2. Non-abelian Chern-Simons Theory in Lorenz gauge (Volume
Preserving Diffeomorphisms)

▶ It was previously thought that only non-abelian theories could
possess kinematic algebras, however, it has been recently
discovered that kinematic algebras exist for linear (abelian)
theories as well.



What are Diffeomorphisms ?

▶ Diffeomorphism are
simultaneous translation
along all integral curves
(field lines) of the vector
field v(x).

▶ It turns out we can
understand the Kinematic
Algebra of Electromagnetism
in terms of diffeomorphisms.



Diffeomorphisms Algebras

A given vector field V µ on a manifold generates infinitesimal
diffeomorphisms:

V µ(x)∂µ, (13)

Then the set of possible all vector fields on a manifold forms a
closed diffeomorphism algebra under the Lie bracket:

[V (1)µ∂µ,V (2)ν∂ν ] = V (3)µ∂µ. (14)

→ i.e the bracket of two vector fields is itself a vector field.



Volume Preserving Diffeomorphism

▶ A vector field V (X ) is said to be Volume preserving if:

∂ · V = 0 (15)

▶ For Abelian gauge fields, this corresponds to the Lorenz
gauge fixing condition.

▶ The full set of volume-preserving diffeomorphism indeed
corresponds to an algebra.

▶ We can take lower dimensional slices of the
volume-preserving algebra to yield subalgebras
(transformations) which act sole in this lower dimension.



Area Preserving Diffeomorphism

An example of such transformations are Area Preserving
Diffeomorphisms.



Gauge Fields at a Closer Look

Consider any gauge field A can be expressed as being “valued” in
terms of diffeomorphism and so-called gauge (local symmetries)
symmetries:

A = Aa
µ ∂µ︸︷︷︸

Infinitesimal
Diffeomorphisms

Infinitesimal
gauge

transformations︷︸︸︷
Ta (16)

Where Ta are the generators of the associated Lie algebra.

[Ta,Tb] = if abcTc , (17)



Abelian Kinematic Algebras from Non-Linear Theories

▶ By making certain restrictions to a non-linear interacting
gauge theory, we can obtain its self-dual (anti-self dual)
abelian counterpart in lightcone gauge.

▶ The kinematic algebra of this self-dual theory corresponds to
an algebra of area-preserving diffeomorphisms (2205.02136).

▶ This suggests that the kinematic algebra of an interacting
theory – is somehow related to the self-dual diffeomorphisms
found in the abelian theory.

▶ We can extend this approach to derive the kinematic algebra
for non-self dual abelian theories. e.g electromagntism



Self-Dual Linearised Fields in Lightcone Gauge

We restrict the (in Euclidean signature) non-linear theory to
linearised (abelian) self-dual solutions (in light-cone gauge) by
choosing:

Aµ = k̂µϕ, (18)

Where:
k̂µ = Bi η̄

i
µν∂ν , (19)

For Bi being a constant 3-vector such that B⃗2 = 0.
η̄i

µν are the so-called ’t Hooft symbols:

η̄
1
µν =

(
0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

)
, η̄

2
µν =

(
0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

)

η̄
3
µν =

(
0 1 0 0

−1 0 0 0
0 0 0 −1
0 0 1 0

)
(20)



Self-Dual Linearised Fields in Lightcone Gauge

The infinitesimal diffeomorphisms of the gauge field:

Aµ∂µ = (k̂µϕ)∂µ =
(
b(1)

[µ b(2)
ν] ∂νϕ

)
∂µ, (21)

with (making the choice B1 ̸= 0):

b(1)
µ = (B1,B2,B3, 0), b(2)

µ =
(

0, B3
B1
,−B2

B1
,−1

)
. (22)

b(1)
µ and b(2)

µ are tangent bivectors, which define null planes where
the diffeomorphisms act. These are known as α- and β-planes.



A Possible Objection

▶ Within the literature, kinematic algebras are usually
associated with interaction terms in a non-linear theory.

▶ However, we can then use abelian gauge theories to clarify
aspects of more general kinematic algebras.

▶ Given that any interacting theory (including a non-abelian
gauge theory) must have a non-interacting linearisation, we
can ask which of our “special” subgroups of diffeomorphisms
can be preserved by the inclusion of interactions.



Lightcone Gauge Electromagnetism

To see the kinematic algebra for electromagnetism, we need to
constrict our algebra of volume-preserving diffeomorphisms to a
closed subgroup of transformations known as
Symplectomorphisms.

Which for a given scalar field ϕi , we define Aµ to be a Hamiltonian
Vector Field :

A(i)
µ = Ωµν∂νϕi . (23)

where Ωµν is the symplectic form.

In Euclidean signature, this takes a familiar form:

Ωµν = Bi η̄
i
µν (24)



Lightcone Gauge Electromagnetism

We then restrict to real solutions of Aµ in Lorentzian signature:

Aµ = k̂µϕ+ k̂†
µϕ

†. (25)

We may choose a particular lightcone gauge defined through the
lightcone coordinates:

u = t − z√
2
, v = t + z√

2
, X = x + iy√

2
, Y = x − iy√

2
, (26)

where (t, x , y , z) are Cartesian coordinates in Lorentzian signature.
With line element:

ds2 = dt2 − dx2 − dy2 − dz2 = 2dudv − 2dXdY . (27)



Lightcone Gauge Electromagnetism

▶ Our Kerr-Schild Operators then take the following form in the
(u, v ,X ,Y ) system:

k̂µ = (0, ∂Y , ∂u, 0) ⇒ k̂µ = (∂Y , 0, 0,−∂u), (28)

k̂†
µ = (0, ∂X , 0, ∂u) ⇒ k̂†µ = (∂X , 0,−∂u, 0) (29)

which corresponds to a choice: (B1,B2,B3) = (−i , 1, 0).
▶ The gauge field then generates a combination of two

area-preserving diffeomorphisms, in (u,Y ) and (u,X ) planes
respectively.



Lightcone Gauge Electromagnetism

The kinematic algebra must then subgroup of the product group

Diff(u,Y ) × Diff(u,X), (30)

As a Hamiltonian vector field, Aµ is given by:

(Au,Av ,AX ,AY ) = (∂Yϕ+ ∂Xϕ
†, 0,−∂uϕ

†,−∂uϕ). (31)

Restricting ϕ ∈ R, we find:

(Au,Av ,AX ,AY ) = ((∂X + ∂Y )ϕ, 0,−∂uϕ,−∂uϕ) . (32)

Or the case ϕ = iξ i.e purely imaginary (for ξ ∈ R):

(Au,Av ,AX ,AY ) =
(
i(∂Y − ∂X ), 0, i∂uξ,−i∂uξ

)
(33)



Lightcone Gauge Electromagnetism

Transforming from (u, v ,X ,Y ) to (u, v , x , y), the non-zero
components of the gauge field for each choice of ϕ are:

Real ϕ
Au =

√
2∂xϕ, Ax = −

√
2∂uϕ. (34)

Imaginary ϕ:
Au = −

√
2∂yξ, Ay =

√
2∂uξ, (35)

With infinitesimal diffeomorphisms:

Real ϕ
∂uAu + ∂xAx = 0, (36)

Imaginary ϕ:
∂uAu + ∂y Ay = 0. (37)



Lightcone Gauge Electromagnetism

▶ For REAL ϕ, Aµ generates
area-preserving
diffeomorphisms in the
(u, x) plane.

▶ For IMAGINARY ϕ, Aµ

generates area-preserving
diffeomorphisms in the
(u, y) plane.

(u,Y) (u,X)

(u,x)

y

x
u



Gauge Dependence of the Diffeomorphism Algebra

If Aµ generates a
symplectomorphism, then a
general gauge transformation:

Aµ = k̂µϕ+ ∂µχ, (38)

will produce a vector field that
does not preserve the symplectic
form.
It will remain in Lorenz gauge,
provided χ is harmonic (∂2χ = 0)

Varying χ will gradually move
out of the special subgroups of
the diffeomorphism algebra.

Diffeomorphisms

Lorenz gauge

Symplectomorphisms

Figure: The set of all physically
equivalent abelian gauge fields
(related by a gauge transformation)
shows up as a line – shown in red –
in the space of all possible
diffeomorphisms.



Scalar QED From First Principles

▶ As mentioned before, the kinematic algebra for (non-linear)
interacting theories (such as self-dual Yang-Mills) is inherited
at least in part from the kinematic algebra for a related linear
theory.

▶ We can exploit this idea to construct non-linear gauge
theories from their abelian counterparts.

▶ Start with an abelian gauge field Aµ that is restricted to the
subset of Hamiltonian fields:

Aµ = Ωµν∂
νϕ, (39)



Scalar QED From First Principles

▶ The general vacuum field equation for Aµ is

∂2Aµ − ∂µ(∂ · A) = 0 (40)

▶ For Hamiltonian vector fields we find:

∂2ϕ = 0. (41)



Possion Brackets and Hamiltonian Vector Fields

▶ Hamiltonian vector fields come equipped with some additional
structure known as a Poisson Bracket.

▶ The Poisson Bracket which acts on our scalar fields ϕi :

{ϕ1, ϕ2} = Ωµν(Ωµα∂αϕ1)(Ωνβ∂βϕ2) = Ωµν(∂µϕ1)(∂νϕ2),
(42)

▶ This implies that some scalar field ϕ3 is related to ϕ1 and ϕ2
via:

ϕ3 = −{ϕ1, ϕ2}, (43)



Scalar QED From First Principles

▶ Let us start with an abelian gauge field Aµ we will restricted
to the subset of Hamiltonian fields:

Aµ = Ωµν∂
νϕ, (44)

▶ Since we are dealing with Abelian gauge fields, the Poisson
bracket ends up being trival:

{ϕ, ϕ} = 0. (45)



Scalar QED From First Principles

▶ Thus, in order to consider extensions to non-linear theories,
we need to introduce an additional gauge field ψ, which at
linear level satisfies the Klein-Gordon equation (e.g Harmonic)

∂2ψ = 0. (46)

▶ We can then extended the E.O.M non-linearly by adding a
Poisson bracket composed of ϕ and ψ:

∂2ψ + c1{ψ, ϕ} = 0, (47)



Scalar QED From First Principles

▶ We now wish to see whether equation (47) is a physically
consistant.

▶ If we want to consider ψ interacting with the gauge field, then
equation (47) (or it’s generalisation) must be
gauge-covariant.

▶ The Hamiltonian nature of Aµ is preserved by the gauge
transformations:

Aµ → A′
µ = Aµ + ∂µχ, (48)

▶ This implies the corresponding gauge transformation for ψ:

ψ → ψ′ = e−ieχψ, (49)



Scalar QED From First Principles

▶ χ (for some α) is then restricted by:

∂µχ = Ωµν∂
να (50)

Using the definition for Hamiltonian Aµ, one may rewrite the
E.O.M for ψ as:

∂2ψ + c1Aµ∂
µψ = 0, (51)

▶ Under a gauge transformation this satisfies:

∂2ψ′ + A′
µ∂

µψ′ = 0 → ∂2ψ + Aµ∂
µψ + ∆ = 0, (52)



Scalar QED From First Principles

▶ Where

∆ = (c1 − 2ie)(∂µχ)(∂µψ)
−iec1Aµ(∂µχ)ψ − (iec1 + e2)(∂µχ)(∂µχ)ψ. (53)

▶ There is no solution for c1 that yields ∆ = 0.
▶ This follows from that one must add a seagull vertex to

scalar QED in order to make it gauge-invariant.



Scalar QED From First Principles

▶ We correct this by adding an additional term to equation (51):

∂2ψ + c1Aµ∂
µψ + c2AµAµψ = 0. (54)

▶ Now when performing the gauge transformation, the
”difference” ∆ is given by:

∆ = (c1 − 2ie)(∂µχ)(∂µψ)
+(2c2 − iec1)Aµ(∂µχ)ψ + (c2 − iec1 − e2)(∂µχ)(∂µχ)ψ.

(55)



Scalar QED From First Principles

▶ The unique solution for ∆ = 0 (e.g gauge invariance) is
(c1, c2) = (2ie,−e2), so that the gauge-invariant scalar field
equation is

∂2ψ + 2ie{ψ, ϕ} − e2AµAµψ = 0. (56)

▶ This has a cubic term, (coming from a quartic interaction in
the Lagrangian).

▶ Therefore, it is not true in general that there is a
straightforward kinematic Lie algebra, i.e. such that there
are up-to-quadratic terms in the field equation only.



Scalar QED From First Principles

▶ However, it is possible to find a the subsector of solutions
where the cubic term vanishes.

▶ The cubic in equation (56) will vanish provided

ΩµαΩµ
β = 0. (57)

▶ This corresponds to self-dual field configurations in the
light-cone gauge.

▶ Applying this to equation (56), we receive:

∂2ψ + 2ie{ψ, ϕ} = 0. (58)



Scalar QED From First Principles

▶ We have shown that an interacting non-linear theory can be
derived from considerations of the ”kinematic algebra”
associated with its abelian (linear) counterpart.

▶ In order to do this, we must restrict ourselves to the use of
Hamiltonian gauge fields as well as Light Cone gauge.

▶ It is possible to go the other way round: start with the full
lagrangian of a non-linear theory, and then make a series of
restrictions (Lorenz gauge and Hamiltonian vector fields) to
yield equation (58).



Overview: Kinematic Algebras for Linear Theories

Non-Linear 
Theory

Linear Solutions to the
Full Equation of Motion

(E.g Abelian Gauge
Fields)

Gauge Fields are valued in
diffeomorphisms 

and 
gauge symmetries

We restrict our
diffeomorphisms to Volume

Preserving e.g choose
Lorenz gauge.

We then actively restrict
to Hamiltonian Gauge

Fields (e.g Not a gauge
choice)

The kinematic algebra
for linear theories is

related to
diffeomorphism 

Related to the
Poisson bracket of

scalar fields



Overview: Building Non-Linear Theories

Abelian Gauge
Theory

We then actively restrict
to Hamiltonian Gauge

Fields (e.g Not a gauge
choice)

Find a non-vanishing Poisson
bracket of scalar fields and

construct a non-linear scalar
equation of motion.

Prove/Make the non-linear
scalar equation gauge

invariant

Is the kinematic algebra
manifest i.e is the only
interaction in the E.O.M
the Poisson Bracket ?

Truncate your theory
(e.g kill off troublesome

additional terms)

Only a subsector of
the non-linear Theory

has inherited the
kinematic algebra

fully 

Non-Linear theory has
fully inherited the

kinematic algebra from
the linear theory

YES

NO



Conclusion

▶ The Double Copy for scattering amplitudes and classical
solutions has revealed to us the existence of mysterious
structures known as kinematic algebras, which are related to
interactions in a gauge theory.

▶ Kinematic algebras are not thought to be Lie algebras in
general, but more structured objects such as homotopy
algebras.

▶ Kinematic algebras can be made manifest (in principle) for
non-interacting classical theories if we truncate the non-linear
theory to consist solely of Hamiltonian vector fields.

▶ If we have a kinematic algebra for an Abelian gauge theory,
we can construct from first principles equations of motion for
a non-linear theory.



Further Work

▶ How are these ideas related to the study of homotopy
algebras?

▶ If a kinematic algebra is not Lie, is there some alternative
description of gauge theories (not fibre-bundle based) that
gives a geometric meaning to the kinematic algebra?

▶ Kinematic algebras have been found for theories of fluid
mechanics; can we get useful physical insights about
kinematic algebras by looking at fluid mechanics?

▶ Can we make interesting new interacting theories out of
abelian building blocks, that have geometrically visualisable
kinematic algebras?

▶ Might some of these theories be useful for (Non-abelian Chern
Simons Theory) condensed matter physics?


