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Lie Algebras

Lie algebras (bracket picture):
Vector space g

Lie bracket r´,´s : gˆ gÑ g such that rX,Y s “ ´rY,Xs and
rX, rY,Zss “ rrX,Y s, Zs ` rY, rX,Zss

Basis ea defines the structure constants fab
c via rea, ebs “ fab

cec

Lie algebras (Chavelley–Eilenberg picture):
Dual vector space pgr1sq˚ (all elements have degree 1)
Basis ξa (of degree 1) are coordinate functions on gr1s

Vector field Q :“ ´ 1
2fab

cξaξb B
Bξc of degree 1 on gr1s, and Q2 “ 0

ô Jacobi identity
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L8-Algebras

L8-algebras (Chavelley–Eilenberg picture):
Graded vector space L “

À

iPZ Li with basis ea and the dual
pLr1sq˚ with basis ξa

Vector field Q :“
ř

i˘
1
i!fa1¨¨¨ai

bξa1 ¨ ¨ ¨ ξai B
Bξb

of degree 1 on Lr1s,
and Q2 “ 0 ô homotopy Jacobi identity
The constants fa1¨¨¨ai

b define brackets µipea1
, . . . , eai

q “: fa1¨¨¨ai
beb

L8-algebras (bracket picture):
Graded vector space L “

À

iPZ Li

Degree 2´ i graded antisymmetric multilinear brackets
µi : Lˆ ¨ ¨ ¨ ˆ LÑ L subject to the homotopy Jacobi identity

ÿ

j`k“i

ÿ

σpj;iq

˘µk`1pµjpXσp1q, . . . , Xσpjqq, Xσpj`1q, . . . , Xσpiqq “ 0

with σpj; iq the pj, i´ jq-unshuffles i.e. σ P Si with
σp1q ă ¨ ¨ ¨ ă σpjq and σpj ` 1q ă ¨ ¨ ¨ ă σpiq
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L8-Algebras

L8-algebras (bracket picture):
µ2
1 “ 0 making pL, µ1q into a complex

¨ ¨ ¨
µ1
ÝÑ L´1

µ1
ÝÑ L0

µ1
ÝÑ L1

µ1
ÝÑ ¨ ¨ ¨

µ1 is a derivation for the bracket µ2

µ2pµ2pX,Y q, Zq ˘ µ3pµ1pXq, Y,Xq` cyclic“ ˘µ1pµ3pX,Y, Zqq
i.e. the Jacobi identity is violated in a controlled way

Special cases:
Lie algebras: L “ L0 and µi “ 0 for i ‰ 2

graded Lie algebras: µi “ 0 for i ‰ 2

differential graded Lie algebras: µi “ 0 for i ą 2

L8-algebras are generalisations of differential graded Lie algebras
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Cyclic L8-Algebras

Lie algebras:
An inner product is a map x´,´y : gˆ gÑ R that is
non-degenerate, symmetric, bilinear, and cyclic
xX, rY,Zsy “ xZ, rX,Y sy

Dually, it is given by a symplectic form ω of degree 2 on gr1s such
that LQω “ 0

L8-algebras:
An inner product or cyclic structure is a map x´,´y : Lˆ LÑ R of
degree ´3 that is non-degenerate, graded symmetric, bilinear, and
cyclic xX1, µipX2, . . . , Xi`1y “ ˘xXi`1, µipX1, . . . , Xiqy

Dually, it is given by a symplectic form ω of degree ´1 on Lr1s such
that LQω “ 0
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Morphisms of L8-Algebras
Lie algebras:

Given two Lie algebras pg, r´,´sq and pg1, r´,´s1q, a morphism
ϕ : gÑ g1 satisfies ϕprX,Y sq “ rϕpXq, ϕpY qs1

Dually, we simply have ϕ ˝Q “ Q1
˝ ϕ

L8-algebras:
Dually, we again have ϕ ˝Q “ Q1

˝ ϕ

In the bracket picture, for two L8-algebras pL, µiq and pL1, µ1
iq, a

morphism ϕ : LÑ L1 is collection of graded antisymmetric multilinear
maps ϕi : Lˆ ¨ ¨ ¨ ˆ LÑ L1 of degree 1´ i subject to
ÿ

j`k“i

ÿ

σpj;iq

˘ϕk`1pµjpXσp1q, . . . , Xσpjqq, Xσpj`1q, . . . , Xσpiqq

“

i
ÿ

j“1

1
j!

ÿ

k1`¨¨¨`kj“i

ÿ

σpk1,...,kj´1;iq

˘ µ1
j

´

ϕk1

`

Xσp1q, . . . , Xσpk1q

˘

, . . . , ϕkj

`

Xσpk1`¨¨¨`kj´1`1q, . . . , Xσpiq

˘

¯

A morphism is called a quasi-isomorphism provided ϕ1 induces an
isomorphism H‚

µ1
pLq – H‚

µ1
1
pL1
q
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Homotopy Maurer–Cartan Theory
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Homotopy Maurer–Cartan Theory
For pL, µiq an L8-algebra, we call a P L1 a gauge potential and
define its curvature as

f :“ µ1paq `
1
2µ2pa, aq ` ¨ ¨ ¨ “

ÿ

iě1

1
i!µipa, . . . , aq

Due to the homotopy Jacobi identity, f satisfies the Bianchi identity

µ1pfq ` µ2pa, fq ` ¨ ¨ ¨ “
ÿ

iě0

1
i!µi`1pa, . . . , a, fq “ 0

For c0 P L0, gauge transformations act as

δc0a :“ µ1paq ` µ2pa, c0q ` ¨ ¨ ¨ “
ÿ

iě0

1
i!µi`1pa, . . . , a, c0q,

δc0f “ µ2pf, c0q ` ¨ ¨ ¨ “
ÿ

iě0

1
i!µi`2pa, . . . , a, f, c0q,

and there are higher gauge transformations with c´k P L´k and

δc´k´1
c´k :“

ÿ

iě0

1
i!µi`1pa, . . . , a, c´k´1q
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Homotopy Maurer–Cartan Theory

The equation f “ 0 is called the Maurer–Cartan equation and solutions to
this equation are called Maurer–Cartan elements

For pL, µi, x´,´yq a cyclic L8-algebra, the Maurer–Cartan equation
follows from the gauge-invariant action functional

S :“ 1
2
xa, µ1paqy `

1
3!
xa, µ2pa, aqy ` ¨ ¨ ¨ “

ÿ

iě0

1
pi`1q!

xa, µipa, . . . , aqy

A morphism ϕ : pL, µiq Ñ pL1, µ1
iq acts as on a gauge potential and its

curvature as

a ÞÑ a1 :“
ÿ

iě1

1
i!
ϕipa, . . . , aq ñ f ÞÑ f 1

“
ÿ

iě0

1
i!
ϕi`1pa, . . . , a, fq

Provided a is a Maurer–Cartan element, gauge equivalence classes ras are
mapped to gauge equivalence classes ra1

s and so, for quasi-isomorphisms,
the corresponding moduli spaces are isomorphic

A morphism is called cyclic provided xX,Y y “ xϕ1pXq, ϕ1pY qy
1 and

ř

j`k“ixϕjpX1, . . . , Xiq, ϕkpXj`1, . . . , Xiqy
1
“ 0 and so, Sras “ S1

ra1
s
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Example: Yang–Mills Theory

Let M be a 4-dimensional compact oriented Riemannian manifold
without boundary and let g be a simple Lie algebra with inner
product x´,´yg. The following data constitutes a cyclic
L8-structure:

Ω1pM, gq
loooomoooon

“:L1

µ1:“dM‹dM
ÝÑ Ω3pM, gq

loooomoooon

“:L2

with

µ2pA1, A2q :“ dM‹rA1, A2s ` rA1, ‹dMA2s ` rA2, ‹dMA1s,

µ3pA1, A2, A3q :“ rA1, ‹rA2, A3ss ` cyclic

and
xω1, ω2y :“

ż

M

xω1, ω2yg

The Maurer–Cartan action becomes S “ 1
2

ş

M
xF, ‹F yg
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Applications in Quantum Field Theory

Application I: Batalin–Vilkovisky Formalism
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Batalin–Vilkovisky Formalism

BV formalism in a nutshell:

Resolve the quotient space of observables:
Introduce ghosts to resolve gauge redundancy (‘BRST’)
Introduce anti-fields to resolve equations of motion
Differential QBV encodes gauge symmetries and equations of motion

QBVϕ “ QBRSTϕ` ¨ ¨ ¨ and QBVϕ
`
“ ˘

δSBRST

δϕ
` ¨ ¨ ¨

BV field space LBVr1s :“ T˚r´1spLBRSTr1sq is a graded vector
space that comes with a natural symplectic form ωBV :“ δϕ` ^ δϕ
of degree ´1, and QBV is Hamiltonian with Hamiltonian SBV and
Q2

BV “ 0 ô tSBV, SBVuBV “ 0

Dually, we obtain a cyclic L8-algebra pLBV, µi, x´,´yq

BV action is a Maurer–Cartan action

BV formalism can be applied to any theory but it is essentially the only
way when quantising theories with higher gauge symmetries
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Batalin–Vilkovisky Formalism

BV formalism in a nutshell:
Resolve the quotient space of observables:

Introduce ghosts to resolve gauge redundancy (‘BRST’)
Introduce anti-fields to resolve equations of motion
Differential QBV encodes gauge symmetries and equations of motion

QBVϕ “ QBRSTϕ` ¨ ¨ ¨ and QBVϕ
`
“ ˘

δSBRST

δϕ
` ¨ ¨ ¨

BV field space LBVr1s :“ T˚r´1spLBRSTr1sq is a graded vector
space that comes with a natural symplectic form ωBV :“ δϕ` ^ δϕ
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Yang–Mills Theory in the Batalin–Vilkovisky Formalism
Let M be a compact oriented Riemannian manifold without
boundary and let g be a simple Lie algebra with inner product
x´,´yg. Consider

Ω0pM, gq
loooomoooon

“:L0 Q c

µ1:“dM
ÝÑ Ω1pM, gq

loooomoooon

“:L1 Q A

µ1:“dM‹dM
ÝÑ Ω3pM, gq

loooomoooon

“:L2 Q A`

µ1:“dM
ÝÑ Ω4pM, gq

loooomoooon

“:L3 Q c`

with

µ2pc1, c2q :“ rc1, c2s, µ2pc, Aq :“ rc, As, µ2pc, A
`q :“ rc, A`s,

µ2pc, c
`q :“ rc, c`s, µ2pA,A`q :“ rA,A`s,

µ2pA1, A2q :“ dM‹rA1, A2s ` rA1, ‹dMA2s ` rA2, ‹dMA1s,

µ3pA1, A2, A3q :“ rA1, ‹rA2, A3ss ` cyclic

and xω1, ω2y :“ ˘
ş

M
xω1, ω2y

Then, with a “ c`A`A` ` c`, the Maurer–Cartan action
becomes

S “

ż

M

!

1
2xF, ‹F yg ´ xA

`,∇cyg `
1
2xc

`, rc, csy
)
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Relative L8-Algebras and Homotopy Maurer–Cartan Theory
Cyclic L8-algebras are suitable for theories on manifolds without
boundary or when considering fields with appropriate fall-off. What about
theories where we have boundaries?

A relative L8-algebra is a pair of L8-algebras, pL, µiq and pLB, µB
i q,

and a morphism ϕ : pL, µiq Ñ pLB, µB
i q between them

It is called cyclic provided it comes with a map x´,´yL : LˆLÑ R

of degree ´3 that is non-degenerate, graded symmetric, and bilinear
as well as a map x´,´yLB : LB ˆ LB Ñ R of degree ´2 that is
bilinear such that pX1, . . . ,Xi`1q ÞÑ rX1, . . . , Xi`1sL with

rX1, . . . , Xi`1sL :“ xX1, µipX2, . . . , Xi`1qyL

`
ÿ

j`k“i`1

xϕjpX1, . . . , Xiq, ϕkpXj`1, . . . , Xi`1qyLB

is non-degenerate and cyclic.
The Maurer–Cartan action now reads as

S :“
ÿ

iě0

1

pi` 1q!
ra, . . . , asL
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Example: Yang–Mills Theory
Let M be a compact oriented Riemannian manifold with boundary
BM and let g be a simple Lie algebra with inner product x´,´yg.
Take pL, µiq as before but because of BM , x´,´yL is not cyclic

For pLB, µB
i q we take

Ω0pBM, gq
loooomoooon

“:LB
0 Q γ

µB
1

ÝÑ Ω1pBM, gq ‘ Ω2pBM, gq
loooooooooooooomoooooooooooooon

“:LB
1 Q pα,βq

µB
1

ÝÑ Ω3pBM, gq
loooomoooon

“:L2 Q α`

with

µB
1pγq :“ pdBMγ, 0q, µB

1pα, βq :“ dBMβ,

µ2pγ1, γ2q :“ rγ1, γ2s, µ2pγ, pα, βqq :“ prγ, αs, rγ, βsq,

µ2pγ, α
`q :“ rγ, α`s,

µ2ppα1, β1q, pα2, β2qq :“ rα1, β2s ` rα2, β1s

and

xγ, α`yLB :“

ż

BM

xγ, α`yg, xpα1, β1q, pα2, β2qyLB :“

ż

BM

xα1, β2yg
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Example: Yang–Mills Theory

The morphism ϕ : pL, µiq Ñ pLB, µB
i q is now

ϕ1pcq :“ c|BM , ϕ1pAq :“ pA, ‹dMAq|BM , ϕ1pA
`q :“ A`|BM ,

ϕ2pA1, A2q :“ ‹rA1, A2s|BM

Then, with a “ c`A`A` ` c`, the Maurer–Cartan action
becomes

S “
ÿ

iě0

1

pi` 1q!
ra, . . . , asL

“

ż

M

!

1
2xF, ‹F yg ´ xA

`,∇cyg `
1
2xc

`, rc, csy
)
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Applications in Quantum Field Theory

Application II: Perturbation Theory and Scattering Amplitudes
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Homological Perturbation Theory
Homotopy Transfer:

Start from a deformation retract, that is, two quasi-isomorphic
complexes pL, µ1q and pL1, µ1

1q with

pL, µ1q pL1, µ1
1q,h

p

e

1 “ e ˝ p` h ˝ µ1 ` µ1 ˝ h, p ˝ e “ 1

where h is of degree ´1 and called a contracting homotopy
Consider higher products µią1 on L as perturbation
Recursive prescription as how this generates higher products µi1ą1

on L1 so that pL, µiq and pL1, µ1
iq are quasi-isomorphic

Applications:
For L1 :“ H‚

µ1
pLq: recover minimal model and tree-level Feynman

diagram expansion
Introducing another perturbation iℏ∆BV yields loop-level Feynman
diagram expansion
Recursive character underlies Berends–Giele-type recursion relations
which exist for all field theories
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Colour-Stripping as Factorisation

C8-algebra b L8-algebra = L8-algebra

Explicit formulas:

L̂ :“ Cb L “
à

kPZ

L̂k, L̂k :“
à

i`j“k

Ci b Lj ,

µ̂1pc1 b ℓ1q :“ dc1 b ℓ1 ˘ c1 b µ1pℓ1q

...

Examples:
For C “ Ω‚pM3q, L “ g Lie algebra
Ñ S for L̂ is the action for Chern–Simons theory
For C “ Ω‚pMdq, L “ L´d`3 ‘ ¨ ¨ ¨ ‘ L0

Ñ S for L̂ is d-dimensional higher Chern–Simons theory

Colour-stripping in scattering amplitudes for a general gauge theory:
L “ Cb g with kinematic C8-algebra C and colour Lie algebra g
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Strictification

Rendering a field theory cubic:
Simpler to analyse field theories with only cubic vertices
Any L8-algebra is quasi-isomorphic to a strict L8-algebra, that is, a
differential graded Lie algebra
This is called strictification

Examples:
The 2nd-order formulation of Yang–Mills theory
SYM2

“ 1
2

ş

M
xF, ‹F yg is quasi-isomorphic to the 1st-order

formulation SYM1
“
ş

M
xB, ‹

`

F ´ 1
2B

˘

yg for B P Ω2pM, gq

More later on . . .

Strictification is used in the context of colour–kinematics duality
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Colour–Kinematics Duality

Colour–kinematics duality of scattering amplitudes states that one can
arrange them such that the colour-stripped vertex is Lie-like, e.g. Jacobi:

` ` “ 0

Thus, vertices (i.e. cubic terms in action) should ideally look like

gadf
d
bc gilk

l
jk ΦaiΦbjΦck

with
gad and fd

bc metric and structure constants of gauge Lie algebra
gil and kljk metric and structure constants of kinematic Lie algebra

What is the kinematic Lie algebra homotopy algebraically?
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Kinematic Lie algebra

Factorise, i.e. colour-strip, the differential graded Lie algebra as
L “ Cb g with pC, d,m2q a differential graded commutative algebra,
d the kinematic operator, and m2 the interactions

Deformation retract

pC, dq pH‚
d pCq, 0qh

p

e

1 “ e ˝ p` d ˝ h` h ˝ d, p ˝ e “ 1

with h the propagator
Write h as h “: b

■ so that ■ “ b ˝ d` d ˝ b

If b is a second-order differential operator, the derived bracket

tX,Y u :“ bpm2pX,Y qq `m2pbpXq, Y q ˘m2pX, bpY qq

is a (shifted) Lie bracket
The derived bracket maps fields to fields: kinematic Lie bracket

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Kinematic Lie algebra

Factorise, i.e. colour-strip, the differential graded Lie algebra as
L “ Cb g with pC, d,m2q a differential graded commutative algebra,
d the kinematic operator, and m2 the interactions
Deformation retract

pC, dq pH‚
d pCq, 0qh

p

e

1 “ e ˝ p` d ˝ h` h ˝ d, p ˝ e “ 1

with h the propagator

Write h as h “: b
■ so that ■ “ b ˝ d` d ˝ b

If b is a second-order differential operator, the derived bracket

tX,Y u :“ bpm2pX,Y qq `m2pbpXq, Y q ˘m2pX, bpY qq

is a (shifted) Lie bracket
The derived bracket maps fields to fields: kinematic Lie bracket

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Kinematic Lie algebra

Factorise, i.e. colour-strip, the differential graded Lie algebra as
L “ Cb g with pC, d,m2q a differential graded commutative algebra,
d the kinematic operator, and m2 the interactions
Deformation retract

pC, dq pH‚
d pCq, 0qh

p

e

1 “ e ˝ p` d ˝ h` h ˝ d, p ˝ e “ 1

with h the propagator
Write h as h “: b

■ so that ■ “ b ˝ d` d ˝ b

If b is a second-order differential operator, the derived bracket

tX,Y u :“ bpm2pX,Y qq `m2pbpXq, Y q ˘m2pX, bpY qq

is a (shifted) Lie bracket
The derived bracket maps fields to fields: kinematic Lie bracket

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Colour–Kinematics Duality from BV■-Algebras

Algebraic structures:
pC, t´,´uq: Gerstenhaber algebra
pC, d, b,m2q with d ˝ b` b ˝ d “ 0 is a differential graded BV algebra

A BV■-algebra is a differential graded commutative algebra C with a
differential b of degree ´1 that is a second-order differential operator
with d ˝ b` b ˝ d “ ■

A theory exhibits colour–kinematics duality, if its L8-algebra is
quasi-isomorphic to a differential graded Lie algebra L “ Cb g with C a
differential graded commutative algebra such that C admits a
BVl-algebra structure with ■ “ l
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differential graded commutative algebra such that C admits a
BVl-algebra structure with ■ “ l
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Examples

Biadjoint scalar field theory, b “ r1s

S :“

ż

ddx
!

1
2φaā lφaā ´ λ

3!fabcfāb̄c̄φ
aāφbb̄φcc̄

)

Self-dual Yang–Mills theory in light-cone gauge, b “ r1s

S :“

ż

d4x
␣

1
2xϕ,lϕyg `

1
3!ε

αβxϕ, rBα 92ϕ, Bβ 92ϕsyg
(

Chern–Simons theory, for harmonic forms, b “ ˘‹d‹

S :“

ż

␣

1
2xA,dAyg `

1
3!xA, rA,Asyg ´ xA

`,∇cyg `
1
2xc

`, rc, csyg
(
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Applications

Idea: Look for Chern–Simons-type formulations of field theories

For Yang–Mills theory:

Holomorphic Chern–Simons theory on twistor space (self-dual sector)
Q-Chern–Simons theory on pure spinor space
Chern–Simons-like formulation on harmonic superspace

The first two: organising principles for colour–kinematics duality

(just as superspaces for supersymmetry)
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Applications in Quantum Field Theory

Application III: Yang–Mills Theory via Twistors

Martin Wolf Homotopy Algebra Perspective on Quantum Field Theory



Yang–Mills Constraint System

Consider Euclidean N “ 3 superspace R4|12
cpl :“ R4|0 ˆC0|12 with

coordinates pxα 9α, η 9α
i , θ

iαq and set

Di
9α :“ Bi9α ` θiαBα 9α, Diα :“ Biα ` η 9α

i Bα 9α

and so
rDiα, D

j
9αs “ 2δi

jBα 9α

For g a Lie algebra, the covariantisation

r∇i
p 9α,∇

j
9βq
s “ 0, r∇ipα,∇jβqs “ 0, r∇iα,∇j

9αs “ 2δi
j∇α 9α

is the constraint system of N “ 3 SYM theory; it is equivalent to
the equations of motion of N “ 3 SYM theory on R4
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Cauchy–Riemann Ambitwistors

Consider F :“ R
4|12
cpl ˆCP

1 ˆCP 1 with λ 9α and µα as coordinates
on CP 1 ˆCP 1 and which comes with a quaternionic structure
pλ 9α, µαq ÞÑ pλ̂ 9α, µ̂αq

Define

T 0,1
CRF :“ spantÊF, ÊL, ÊR, Ê

i, Êiu,

ÊF :“ µαλ 9αBα 9α, ÊL :“ |λ|2λ 9α
B

Bλ̂ 9α

, ÊR :“ |µ|2µα
B

Bµ̂α
,

Êi :“ λ 9αDi
9α, Êi :“ µαDiα

which is an integrable CR structure with rÊi, Ê
js “ 2δi

jÊF

Let A P Ω0,1
CR b g. Under the assumption that there is a gauge in

which ÊL
␣A “ 0 “ ÊR

␣A, the CR holomorphic Chern–Simons
equation

B̄CRA`
1
2 rA,As “ 0

on F is equivalent to the N “ 3 SYM constraint system on R4|12
cpl
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Twisted CR Structure
Consider the CR holomorphic and antiholomorphic coordinates
ηi :“ η 9α

i λ 9α, θi :“ θiαµα, η̄i :“ ´
η 9α
i λ̂ 9α

|λ|2
, and θ̄i :“ ´ θiαµ̂α

|µ|2
and the new

basis

T 0,1
CRF “ spantÊ1

F, Ê
1
L, Ê

1
R, Ê

1i, Ê1
iu,

Ê1
F :“ ÊF, Ê1

L :“ ÊL ` θ̄iηiÊF, Ê1
R :“ ÊR ´ θiη̄iÊF,

Ê1i :“ Êi
´ θ̄iÊF, Ê1

i :“ Êi ´ η̄iÊF

with rÊ1
L, Ê

1
Rs “ 2θiηiÊ

1
F

Set g :“ eθ̄
iηiEW`θiη̄iEŴ with EW :“ µαλ̂ 9α

|λ|2
Bα 9α and EŴ :“ ´ µ̂αλ 9α

|µ|2
Bα 9α

and define the twisted CR structure

T 0,1
CR, twF :“ spantV̂F, V̂L, V̂R, V̂

i, V̂iu,

V̂F :“ gÊ1
Fg

´1
“ ÊF,

V̂L :“ gÊ1
Lg

´1
“ ÊL ` θiηiEŴ, V̂R :“ gÊ1

Rg
´1
“ ÊR ` θiηiEW,

V̂ i :“ gÊ1ig´1
“ B̄

i, V̂i :“ gÊ1
ig

´1
“ B̄i

with rV̂L, V̂Rs “ 2θiηiV̂F
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F, Ê
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L :“ ÊL ` θ̄iηiÊF, Ê1
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Fg

´1
“ ÊF,
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Quasi-Isomorphy

Let Ω0,‚
CR, tw, red be those elements of Ω0,‚

CR, tw that do not have CR
antiholomorphic fermionic directions and that depend CR holomorphically
on the fermionic coordinates

The differential graded Lie algebras pΩ0,‚
CR b g, B̄CR, r´,´sq,

pΩ0,‚
CR, tw b g, B̄CR, tw, r´,´sq, and pΩ0,‚

CR, tw, red b g, B̄CR, tw, red, r´,´sq

are all quasi-isomorphic
Hence,

B̄CR, twA`
1
2
rA,As “ 0 with V̂ i␣A “ 0 “ V̂i

␣A

is equivalent to the N “ 3 SYM constraint system on R4|12
cpl

Define the twisted CR holomorphic volume form

ΩCR, tw :“ vF ^ vW ^ vŴ ^ vL ^ vR b v1v2v3v
1v2v3

and so

S :“

ż

ΩCR, tw ^
␣

1
2
xA, B̄CR, twAy `

1
3!
xA, rA,Asy

(
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Semi-Classical Equivalence

BV action for twisted CR holomorphic Chern–Simons theory:

SCRCS :“

ż

ΩCR, tw ^

!

1
2xA, B̄CR, twAy `

1
3!xA, rA,Asy

´ xA`, ∇̄CR, twcy `
1
2xC

`, rC,Csy
)

BV action for first-order N “ 3 supersymmetric Yang–Mills theory:

SYM1
:“

ż

!

xB, ‹F y ´ 1
2xB, ‹By ´ xA`,∇cy ´ xB`, rB, csy

` 1
2xc

`, rc, csy
)

` ‘N “ 3 completion’

The theories described by SCRCS and SYM1
are quasi-isomorphic via

homotopy transfer, that is, SYM1
is obtained from SCRCS by integrating

out infinitely many auxiliary fields
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Conclusions
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A Dictionary
The Homotopy Algebraic Perspective on perturbative QFT:

Perturbative QFT Homotopy Algebra

fields of ghost number n elements of degree 1´ n in an L8-algebra
action principle cyclic L8-algebra

free part of the action differential µ1

interaction parts higher products µią1

semi-classical equivalence L8-quasi-isomorphism
Feynman diagram expansion homological perturbation theory ph, p, eq

propagator contracting homotopy h
gauge fixing embedding e + . . .

scattering amplitudes Maurer–Cartan action for minimal model
Berends–Giele recursions L8-quasi-morphism to minimal model

colour-stripping factorising L8-algebra
...

...

Action and scattering amplitudes on equal footing: L8-algebras
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Further Applications

The double copy i.e. gauge theory b gauge theory “ gravity can be
understood via homotopy algebras in terms tensor products of
BV■-algebras
Quasi-isomorphisms are not necessarily obtained by homotopy
transfer, however, one can always construct a span of L8-algebras
L1 Ð LÑ L2 such that the arrows are homotopy transfers; for
instance, T-duality can be understood this way
L8-algebras are the gauge algebras of higher gauge theory and the
infinitesimal versions of higher groups Ñ higher differential geometry
Higher structures appear also in other contexts such as fluid
dynamics where incompressible fluid flows in d ě 3 dimensions can
be understood via higher symplectic geometry
. . .
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Thank You!
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