Towards Models for 2-Hilb and 3-Hilb as targets for functorial field theories

Joint with André Henriques and Dave Penneys, based on arXiv:2411.01678 and Work in Progress

Nivedita

University of Oxford

University of Hertfordshire Mathematics and Theoretical Physics Seminar November 8, 2024

Table of Contents

- W*-Categories
- 2 Bi-involutive tensor W*-categories
- 3 Commutant of a tensor category
- 4 Bicommutant Categories
- Concluding Remarks

 W^* -Categories

Introduction

Algebraic	Unitary Topological
Vector space	Hilbert space
Algebra	von Neumann algebra
Linear Category	W*-category
Tensor Category	Bicommutant Category

W*- categories: "categorified" Hilbert Spaces.

Bicommutant categories: "categorified" of von Neumann algebras.

Dagger Categories

Definition (Dagger Categories)

A **dagger category** is a category \mathcal{T} equipped with function $(-)^{\dagger}: \operatorname{Hom}_{\mathcal{T}}(X,Y) \to \operatorname{Hom}_{\mathcal{T}}(Y,X)$ for all pairs of objects X,Y of \mathcal{T} such that:

- for any object X, $\operatorname{id}_X^{\dagger} = \operatorname{id}_X$.
- for any morphism $f: X \to Y$, $(f^{\dagger})^{\dagger} = f$
- for any two morphisms f and g such we have $(g \circ f)^{\dagger} = f^{\dagger} \circ g^{\dagger}$.

The most important dagger category which will show up throughout this talk is the category of Hilbert spaces Hilb where the †-structure is given by taking the adjoint of linear maps.

String Calculus for Dagger Categories

We represent $f: X \to Y$ as

If the direction of f matches the up direction (blue arrow) then we read it as f, if it is the opposite we read it as f^{\dagger} .

We represent composition by concatenation and it is read down to up. For example, the diagram

is read as $X \xrightarrow{f} Y \xrightarrow{g^{\dagger}} Z$.

W*-categories ∼ "Von-Neumann Algebra-oids"

A *-category is a $\mathbb{C}\text{-linear}$ †-category such that the † is anti-linear on hom-spaces.

Let \mathcal{T} be is a *-category, we write \mathcal{T}^{\oplus} for the category whose objects are formal finite sums of objects of \mathcal{T} , and whose morphisms are given by $\operatorname{Hom}_{\mathcal{T}}(\oplus X_i, \oplus X_j) := \oplus_{i,j} \operatorname{Hom}_{\mathcal{T}}(X_i, X_j)$.

Definition (W*-categories)

A W*-category is a *-category $\mathcal T$ such that $\operatorname{End}_{\mathcal T}(X)$ is a von Neumann algebra for every $X\in\mathcal T^\oplus$.

 $\overline{\mathcal{T}}$ is the category with same objects as \mathcal{T} , and complex conjugate hom-spaces. We note this as the first involution (\dagger_0) .

Definition (Idempotent completion)

A W*-category is called **idempotent complete** if whenever a morphism $p: X \to X$ satisfies $p^2 = p^* = p$, there exists an object Y and a morphism $\iota: Y \to X$ such that $\iota\iota\iota^* = p$ and $\iota^*\iota = \mathrm{id}_Y$.

Definition (Generating set)

A W^* -category $\mathcal T$ is said to admit a set of generators if there exists a set of objects such that every non-zero object admits a non-zero map from at least one of the generators. It is said to admit a generator if the above set may be taken to consist of a single object.

Definition (Orthogonal direct sums)

Given a collection of objects X_i in a W^* -category indexed by some set I, their **orthogonal direct sum** is an object X equipped with morphisms $\iota_i: X_i \to X$ satisfying

$$\iota_i^*\iota_j = \delta_{ij} \mathrm{id}_{X_i}$$
 $\sum \iota_i^*\iota_i = \mathrm{id}_X.$

The orthogonal direct sums, if it exists, is denoted $\bigoplus_{i \in I} X_i$. Here, the infinite sum $\sum_{i \in I} \iota_i^* \iota_i$ is defined as the sup over all finite subsets $I_0 \subset I$ of the finite sums $\sum_{i \in I_0} \iota_i^* \iota_i$.

Definition (Cauchy completion)

We call a W^* -category (Cauchy) complete if it admits a generator, is idempotent complete, and has all direct sums.

We write $\mathcal{C}^{\hat{\oplus}}$ for the direct sum completion of the idempotent completion of a W^* -category \mathcal{C} , and call it the *Cauchy completion* of \mathcal{C} .

vN-algebra and W*-category

Theorem.

Every complete W*-category $\mathcal T$ is equivalent to $R\operatorname{-Mod}$ for some von Neumann algebra R.

Let X be a geneartor of $\mathcal T$ and $R:=\operatorname{End}_{\mathcal T}(X)^{\operatorname{op}}.$

$$BR^{\mathrm{op}} o \mathcal{T}$$
 and $BR^{\mathrm{op}} o R ext{-}\mathrm{Mod}$
 $\star_{R^{\mathrm{op}}} \mapsto X$ and $\star_{R^{\mathrm{op}}} \mapsto_R L^2 R$

On Cauchy completion, this extends to equivalences,

$$(BR^{\mathsf{op}})^{\hat{\oplus}} \xrightarrow{\simeq} \mathcal{T} \text{ and } (BR^{\mathsf{op}})^{\hat{\oplus}} \xrightarrow{\simeq} R\text{-}\mathrm{Mod}.$$

Therefore, $\mathcal{T} \cong R\text{-}\mathrm{Mod}$.

vN-bimodules and W*-functors

Let \mathcal{T}_1 and \mathcal{T}_2 be W*-categories.

A functor between W*-categories is a *-functor $F:\mathcal{T}_1\to\mathcal{T}_2$ that induces normal homomorphisms $\operatorname{End}_{\mathcal{T}_1}(T)\to\operatorname{End}_{\mathcal{T}_2}(F(T))$ for all $T\in\mathcal{T}_1$.

Theorem

Given von Neumann algebras R_1 and R_2 , the functor

$$\operatorname{Bim}(R_2, R_1) \to \operatorname{Func}(R_1\operatorname{-Mod}, R_2\operatorname{-Mod})$$

 $R_2X_{R_1} \mapsto R_2X\boxtimes_{R_1} -$

is an equivalence of categories.

The inverse of sends a functor $F: R_1\text{-}\mathrm{Mod} \to R_2\text{-}\mathrm{Mod}$ to the bimodule $R_2(F(R_1L^2R_1))_{R_1}$.

Intertwiners correspond to natural transformations.

Monoidal Structure

Given Cauchy complete W^* -categories, their *completed tensor product* is given by:

$$\mathcal{T}_1 \hat{\otimes} \mathcal{T}_2 := (\mathcal{T}_1 \otimes \mathcal{T}_2)^{\hat{\oplus}}.$$

where \otimes is the tensor product of \mathbb{C} -linear categories. Hilb = $(\mathbf{B}\mathbb{C})^{\hat{\oplus}}$ is the unit of the above operation.

Theorem

Given von Neumann algebras R_1 and R_2 , the functor

$$(R_1 ext{-}\mathrm{Mod})\,\hat{\otimes}\,(R_2 ext{-}\mathrm{Mod}) \to (R_1ar{\otimes}R_2) ext{-}\mathrm{Mod}$$

 $(R_1H)\otimes(R_2K) \mapsto_{R_1ar{\otimes}R_2}(H\otimes K)$

is an equivalence of categories.

Hilb-valued inner product

Definition (Inner Product)

Every W*-category \mathcal{T} admits a canonical Hilb-valued inner product $\langle -, - \rangle_{\mathrm{Hilb}} : \overline{\mathcal{T}} \times \mathcal{T} \to \mathrm{Hilb}$ given by:

$$\langle X, Y \rangle_{\text{Hilb}} := p_Y L^2(\text{End}(X \oplus Y))p_X,$$

where $p_X, p_Y \in \text{End}(X \oplus Y)$ are the two projections.

Lemma

Let $\mathcal T$ be a Cauchy complete W^* -category. Then

$$\mathcal{T} \to \operatorname{Func}(\overline{\mathcal{T}}, \operatorname{Hilb})$$
 (1)
 $X \mapsto \langle -, X \rangle$

is an equivalence of categories. This corresponds to a statement corresponding to the Riesz representation theorem.

Involution on W^* -functors (\dagger_1)

Definition (Adjoint of a W^* -functor)

Given a functor $F\colon \mathcal{T}_1\to \mathcal{T}_2$ between Cauchy complete W*-categories, its adjoint F^\dagger is defined as the composite

 $F^{\dagger}: \mathcal{T}_2 \xrightarrow{\simeq} \operatorname{Hom}(\overline{\mathcal{T}_2}, \operatorname{Hilb}) \xrightarrow{-\circ \overline{F}} \operatorname{Hom}(\overline{\mathcal{T}_1}, \operatorname{Hilb}) \xrightarrow{\simeq} \mathcal{T}_1.$

Equivalently, the functor $F^{\dagger}:D\to C$ is specified by the requirement that

$$\langle X, F^{\dagger}(Y) \rangle_{\text{Hilb}} \cong \langle F(X), Y \rangle_{\text{Hilb}},$$
 (2)

naturally in X and Y.

Definition (For a natural transformation)

Given a natural transformation $\alpha: F \Rightarrow G$ between functors $\mathcal{T}_1 \to \mathcal{T}_2$, the adjoint natural transformation $\alpha^{\dagger}: F^{\dagger} \Rightarrow G^{\dagger}$ is specified,

$$\begin{array}{c} \left\langle X, F^{\dagger}(Y) \right\rangle_{\mathrm{Hilb}} \stackrel{\simeq}{\longrightarrow} \left\langle F(X), Y \right\rangle_{\mathrm{Hilb}} \\ \left\langle \mathsf{id}_{X}, (\alpha^{\dagger})_{Y} \right\rangle \downarrow \qquad \qquad \downarrow \left\langle \alpha_{X}, \mathsf{id}_{Y} \right\rangle \\ \left\langle X, G^{\dagger}(Y) \right\rangle_{\mathrm{Hilb}} \stackrel{\simeq}{\longrightarrow} \left\langle G(X), Y \right\rangle_{\mathrm{Hilb}} \end{array}$$

commutes.

Lemma

The operations $F\mapsto F^\dagger$ and $\alpha\mapsto\alpha^\dagger$ assemble to an antilinear equivalence

$$\dagger : \operatorname{Func}(\mathcal{T}_1, \mathcal{T}_2) \to \operatorname{Func}(\mathcal{T}_2, \mathcal{T}_1), \tag{3}$$

and there are natural unitary isos $\varphi_F:F\to F^{\dagger\dagger}$ and $\nu_{F,G}:F^\dagger\circ G^\dagger\to (G\circ F)^\dagger.$

We also have $\alpha^* \colon G \Rightarrow F$ defined pointwise as $(\alpha^*)_X := (\alpha_X)^*$, which gives the antilinear involution $* \colon \operatorname{Func}(\mathcal{T}_1, \mathcal{T}_2) \to \operatorname{Func}(\mathcal{T}_1, \mathcal{T}_2)$. This is (\dagger_2) .

2-Hilb

Theorem

The assignment $R\mapsto R\operatorname{-Mod}$ induces an equivalence of bicategories $\operatorname{Mor}(vN)\stackrel{\simeq}{\to} W^*\operatorname{Cat}$

Remark: It is in fact a equivalence of *tri-involutive monoidal* (fully-dagger monoidal) bi-categories.

	vN2	W*Cat
†o	complex conjugation or op of algebra	complex conjugation or op of category
†1	complex conjugation of underlying hilbert space	adjoint functor
†2	adjoint of linear intertwiner	pointwise * (adjoint of linear maps)
	spacial tensor product $ar{\otimes}$	Complete tensor product of categories $\hat{\otimes}$

2-Hilb-analogies with Hilb

A Hilbert space H	A complete W^* -category $\mathcal T$
The one dimensional Hilbert space $\mathbb C$	The W*-category Hilb
Scalar multiplication $\cdot \colon \mathbb{C} \times H \to H$	Canonical tensor $\mathrm{Hilb} imes \mathcal{T} o \mathcal{T}$
Inner product $\langle \ , \ \rangle \colon \overline{H} \times H \to \mathbb{C}$	Hilb -valued inner product $\overline{\mathcal{T}} imes \mathcal{T} o \operatorname{Hilb}$

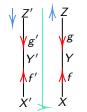
This is just a glimpse, lots more listed in the beginning of arXiv:2411.01678

Bi-involutive tensor W*-categories

String calculus for W*-categories

We stack the string diagrams for $\overline{\mathcal{T}}$ and \mathcal{T} , separated by a dividing line. This line comes with a co-orientation, which remembers how the inner product diagram is read. The conjugate category $\overline{\mathcal{T}}$ has the opposite local-up direction.

$$\left\langle X',X\right\rangle \xrightarrow{\left\langle f'^{\dagger},f\right\rangle }\left\langle Y',Y\right\rangle \xrightarrow{\left\langle g',g^{\dagger}\right\rangle }\left\langle Z',Z\right\rangle$$



There is a unitary isomorphism, $J_{X,Y}\colon \langle X,Y\rangle \xrightarrow{\sim} \overline{\langle Y,X\rangle}$ natural in X,Y. Diagrammatically, $\overline{\langle \ ,\ \rangle}$ swaps the two strings which makes the isomorphism J manifest.

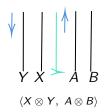
W*-tensor categories

A *-tensor category $(\mathcal{T}, \otimes, 1, \alpha, I, r)$ is a *-category with a monoidal structure which is compatible in the sense that

$$\otimes: \mathcal{T} \times \mathcal{T} \to \mathcal{T}$$

is a bilinear functor of *-categories, and the associator α and left and right unitors I, r are unitary.

The string calculus naturally extends to monoidal W^* -categories where the tensor product of objects is represented by placing corresponding strings in parallel left to right in $\mathcal T$ and right to left in $\overline{\mathcal T}$. The tensor product in $\mathcal T$ and $\overline{\mathcal T}$ are read outwards starting from the dividing line.



Bi-involutive W*-tensor categories

A **bi-involutive** W*-tensor category is a W*-tensor category $\mathcal T$ equipped with a covariant anti-linear, anti-tensor functor

$$\overline{}: \mathcal{T} \to \mathcal{T}$$

called the conjugate. The structure data of this anti-tensor functor are denoted

$$u_{A,B}: \overline{A} \otimes \overline{B} \xrightarrow{\simeq} \overline{B \otimes A} \quad \text{and} \quad j: 1 \to \overline{1}$$

and which satisfy some diagrams.

The functor $\overline{}$ is involutive, meaning that for every $A \in \mathcal{T}$, we are given unitary natural unitary isomorphisms

$$\varphi_A:A\to\overline{\overline{A}}$$

satisfying $\varphi_{\overline{A}} = \overline{\varphi_A}$.

Finally, we require the compatibility conditions $\varphi_1 = \overline{j} \circ j$ and $\varphi_{A \otimes B} = \overline{\nu_{B,A}} \circ \nu_{\overline{A} \, \overline{B}} \circ (\varphi_A \otimes \varphi_B)$.

Bi-involutive tensor functors

A tensor functor $F: \mathcal{T}_1 \to \mathcal{T}_2$ between bi-involutive *-tensor categories is called a bi-involutive tensor functor if it comes equipped with a unitary natural transformation

$$\gamma_X : F(\overline{X}) \to \overline{F(X)}$$

satisfying the following coherences:

$$F(\overline{X}) \otimes F(\overline{Y}) \xrightarrow{\mu_{\overline{X},\overline{Y}}} F(\overline{X} \otimes \overline{Y}) \xrightarrow{F(\nu_{x,y}^{T_1})} F(\overline{Y} \otimes \overline{X})$$

$$\uparrow_{\chi \otimes \gamma_Y} \downarrow \qquad \qquad \downarrow^{\gamma_{Y \otimes X}}$$

$$\overline{F(X)} \otimes \overline{F(Y)} \xrightarrow{\nu_{F(X) \otimes F(Y)}^{T_2}} \overline{F(Y) \otimes F(X)} \xrightarrow{\overline{\mu_{Y \otimes X}}} \overline{F(Y \otimes X)}$$

$$F(x) \xrightarrow{F(\varphi_X^{T_1})} F(\overline{x})$$

$$\downarrow^{\gamma_{\overline{X}}}$$

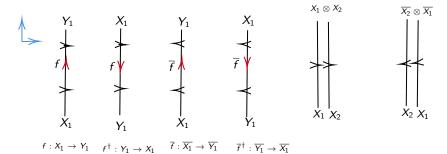
$$\overline{F(X)} \xleftarrow{\overline{F(X)}} \longleftarrow \overline{F(\overline{X})}$$

String calculus for bi-involutive categories

Similar to the chosen up-direction, there is a chosen right direction, together these can be thought as the chosen coordinate axes for a string diagram of a bi-involutive tensor category. We equip our objects with a normal vector or a co-orientation.

We then represent \overline{X} by reversing the co-orientation or reflecting along the up-direction.

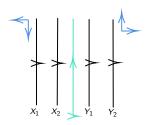
This makes ν and φ with the coherences automatically manifest. The unit object is transparent, so j is also in-built.



For bi-involutive W*-tensor category

For a bi-involutive tensor category $\overline{\mathcal{T}}$, the local up and right directions are both reversed.

For example, the inner-product $\langle \overline{X_1 \otimes X_2}, Y_1 \otimes Y_2 \rangle \simeq \langle \overline{X_2} \otimes \overline{X_1}, Y_1 \otimes Y_2 \rangle$ is represented as:



We also have the following isomorphism defined by ——— being an anti-linear, anti-tensor functor,

$$\begin{split} \langle \overline{X}, \overline{Y} \rangle &= \rho_{\overline{Y}} L^2(\operatorname{End}(\overline{X} \oplus \overline{Y})) \rho_{\overline{X}} = \rho_{\overline{Y}} L^2(\overline{\operatorname{End}(X \oplus Y)}) \rho_{\overline{X}} \\ &= \rho_{\overline{Y}} \overline{L^2(\operatorname{End}(X \oplus Y))} \rho_{\overline{X}} = \overline{\rho_Y L^2(\operatorname{End}(X \oplus Y)) \rho_X} \\ &= \overline{\langle X, Y \rangle}. \end{split}$$

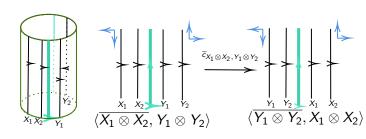
We define an isomorphism $c_{X,Y} \colon \langle X,Y \rangle \to \langle \overline{Y}, \overline{X} \rangle$ as the following composition,

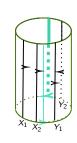
$$\langle X, Y \rangle \xrightarrow{J} \overline{\langle Y, X \rangle} \rightarrow \langle \overline{Y}, \overline{X} \rangle$$

and $\tilde{c}_{X,Y} \colon \langle \overline{X}, Y \rangle \to \langle \overline{Y}, X \rangle$ as the following composition,

$$\langle \overline{X}, Y \rangle \to \langle \overline{Y}, \overline{\overline{X}} \rangle \to \langle \overline{Y}, X \rangle$$

using φ_X in the last arrow.





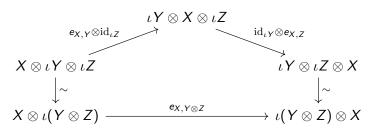
Commutant of a tensor category

Relative Centre

Let $\iota:\mathcal{T}\to\mathcal{E}$ be a tensor functor between W^* -tensor categories. The unitary commutant $\mathcal{Z}(\iota\colon\mathcal{T}\to\mathcal{E})$ of \mathcal{T} inside \mathcal{E} (denoted, $\mathcal{Z}(\iota)$) is the category whose objects are pairs $(X,\{e_X\})$, where X is an object of \mathcal{E} and

$$\{e_X\} = (e_{X,Y} : X \otimes \iota Y \to \iota Y \otimes X)_{Y \in \mathcal{T}}$$

is a collection of unitary isomorphisms, called a half-braiding. The half-braiding is required to be natural in Y, and to satisfy the following in $\mathcal E$ for every $Y,Z\in\mathcal T$:



Absorbing objects

An object $\Omega \in \mathcal{T}$ is *left absorbing (right absorbing)* if it is a non-left(right)-zero-divisor and for every non-left(right)-zero-divisor $X \in \mathcal{T}$ we have $\Omega \otimes X \cong \Omega$ $(X \otimes \Omega \cong \Omega)$.

The object is absorbing if it is both left absorbing and right absorbing. The absorbing subcategory \mathcal{T}^{abs} is the completion of the full subcategory on absorbing objects.

Lemma

Given a tensor functor $\iota\colon \mathcal{T}\to\mathcal{E}$, for a complete W^* -tensor category which admits weakly absorbing objects, the map $\mathcal{Z}(\iota)\to\mathcal{Z}(\iota|_{\mathcal{T}^{abs}})$ is fully-faithful.

Bicommutant Categories

Definition of Bicommutant Category

Let $\mathcal T$ be a Cauchy complete bi-involutive W^* -tensor category that admits absorbing objects. This gives us two dagger-monoidal functors,

$$L \colon \mathcal{T} \to \mathsf{End}(\mathcal{T}^{\mathrm{abs}})$$
 given by $X \mapsto X \otimes - R \colon \mathcal{T}^{\mathrm{mop}} \to \mathsf{End}(\mathcal{T}^{\mathrm{abs}})$ given by $X \mapsto - \otimes X$

A bicommutant category $\mathcal T$ is such a category equipped with a unitary natural isomorphism $\gamma^L\colon L(\overline{})\Rightarrow L()^\dagger$ which make L a bi-involutive tensor W*-functor. Using the associators of $\mathcal T$, L and R induce maps

$$\mathcal{T} o \mathcal{Z}(R \colon \mathcal{T}^{\mathrm{mop}} o \mathrm{End}(\mathcal{T}^{\mathrm{abs}}))$$

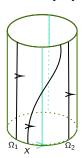
 $\mathcal{T}^{\mathrm{mop}} o \mathcal{Z}(L \colon \mathcal{T} o \mathrm{End}(\mathcal{T}^{\mathrm{abs}}))$

We require these to be equivalences. We require a lot of diagram to commute, which we now list.

For all $X \in \mathcal{T}$, $\Omega_1, \Omega_2 \in \mathcal{T}^{abs}$, γ^L induces a map

$$\gamma_X^L: \langle \overline{\Omega_1 \otimes X}, \Omega_2 \rangle_{\mathrm{Hilb}} \to \langle \overline{\Omega_1}, X \otimes \Omega_2 \rangle_{\mathrm{Hilb}}$$

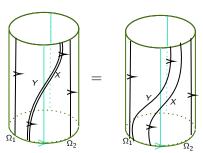
We represent this map diagrammatically by:



The coherences for L being bi-involutive tensor functors are the following:

$$\begin{array}{ccc} \langle \overline{X} \otimes \overline{Y} \otimes \overline{\Omega}_{1}, \Omega_{2} \rangle & \xrightarrow{\gamma_{X}^{L}} & \langle \overline{Y} \otimes \overline{\Omega}_{1}, X \otimes \Omega_{2} \rangle \\ & \downarrow^{\nu_{X,Y}} \downarrow & \downarrow^{\gamma_{Y}^{L}} \\ \langle \overline{Y \otimes X} \otimes \overline{\Omega}_{1}, \Omega_{2} \rangle & \xrightarrow{\gamma_{Y \otimes X}^{L}} & \langle \overline{\Omega}_{1}, Y \otimes X \otimes \Omega_{2} \rangle \end{array}$$

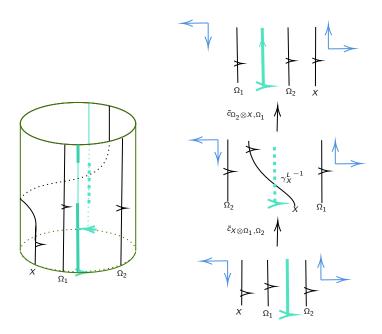
which is manifestly encoded by the diagrammatic calculus.



Using γ^L , we define γ^R :

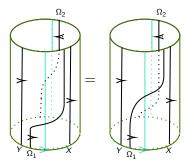
$$\begin{array}{c} \left\langle \overline{X \otimes \Omega_{1}}, \Omega_{2} \right\rangle \stackrel{\gamma_{X}^{R}}{\longrightarrow} \left\langle \overline{\Omega_{1}}, \Omega_{2} \otimes X \right\rangle \\ \tilde{c}_{X \otimes \Omega_{1}, \Omega_{2}} \downarrow \qquad \qquad \Big| \tilde{c}_{\Omega_{2} \otimes X, \Omega_{1}} \\ \left\langle \overline{\Omega_{2}}, X \otimes \Omega_{1} \right\rangle \stackrel{}{\underset{\left(\gamma_{X}^{L}\right)^{-1}}{\longrightarrow}} \left\langle \overline{\Omega_{2} \otimes X}, \Omega_{1} \right\rangle \end{array}$$

Diagrammatically, this involves changing the preferred dividing line, performing γ_X^{L-1} and changing the preferred line again.



This makes R a bi-involutive tensor functor.

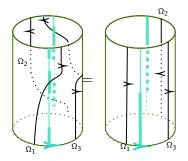
$$\begin{array}{ccc} \langle \overline{Y \otimes \Omega_{1} \otimes X}, \Omega_{2} \rangle & \xrightarrow{\gamma_{X}^{L}} & \langle \overline{Y \otimes \Omega_{1}}, X \otimes \Omega_{2} \rangle \\ & & & \downarrow^{\gamma_{Y}^{R}} & & \downarrow^{\gamma_{Y}^{R}} \\ \langle \overline{\Omega_{1} \otimes X}, \Omega_{2} \otimes Y \rangle & \xrightarrow{\gamma_{X}^{L}} & \langle \overline{\Omega}_{1}, X \otimes \Omega_{2} \otimes Y \rangle \end{array}$$



Finally, when when all three of $\Omega_1, \Omega_2, \Omega_3$ are absorbing, we require the following diagram to commute.

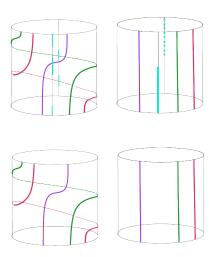
$$\begin{array}{c} \left\langle \overline{\Omega_{1}}, \Omega_{3} \otimes \Omega_{2} \right\rangle \xrightarrow{\gamma_{\Omega_{2}}^{R} - 1} \left\langle \overline{\Omega_{2} \otimes \Omega_{1}}, \Omega_{3} \right\rangle \\ \tilde{c}_{\Omega_{1}, \Omega_{2} \otimes \Omega_{3}} \downarrow & \downarrow \gamma_{\Omega_{1}}^{t} \\ \left\langle \overline{\Omega_{3} \otimes \Omega_{2}}, \Omega_{1} \right\rangle \xrightarrow{\gamma_{\Omega_{3}}^{R} - 1} \left\langle \overline{\Omega_{2}}, \Omega_{1} \otimes \Omega_{3} \right\rangle \end{aligned}$$

We represent this by two morphisms, the LHS of the diagram below indicates the morphism $\gamma_{\Omega_3}^{R-1}\circ\gamma_{\Omega_1}^L\circ\gamma_{\Omega_2}^{R-1}$, and the RHS is the morphism $\tilde{c}_{\Omega_1,\Omega_2\otimes\Omega_3}$.



Strings on Cylinder

We can put the dividing line anywhere and evaluate, as long as there is at least one string on each side of it.



Concluding Remarks

Examples

 $\mathcal{T}=(\mathcal{T},\otimes,\mathbb{I},\alpha,l,r,\bar{-},\nu,j,\varphi,\gamma^L)$ be a bicommutant category. Some examples include:

 (Hilb, \otimes)

 $(\operatorname{Bim}(R), \boxtimes_R)$ for some von Neumann algebra R.

 $(\mathrm{Hilb}[G])$ for a discrete group G

 $(\operatorname{Rep}_{\operatorname{soliton}}(\mathcal{A}), \boxtimes_{\mathcal{A}})$ for a conformal net \mathcal{A}

- When $\mathcal A$ is the WZW net for a compact connected group G at level k, this is $\operatorname{Rep}_k(\Omega G)$
- When $\mathcal A$ is the Virasoro net, this is $\operatorname{Rep}_c(\operatorname{Diff}(S^1)), \boxtimes)$ at some fixed central charge $c \in \{16/m(m+1): m2\} \cup [1,\infty)$.

Upcoming Work

Work in Progress includes understanding modules over Bicommutant categories and their "categorified" Connes-fusion. A candidate definition is, given M,N right and left \mathcal{T} -modules respectively, we can define their fusion as

$$M \boxtimes_{\mathcal{T}} N = p_N \operatorname{End}_{\mathcal{T}\operatorname{-Mod}}(\overline{M} \oplus N)^{\operatorname{abs}} p_{\overline{M}}$$

Constructing the 0 and 1 piece of a Segal (Functorial) Chiral CFT, as a functor,

$$Cob_{0,1,2}^{conf} \to Mor(BicommCat)$$

where Mor(BicommCat) may serve as 3-Hilb in place of Mor(TensCat) which is usually taken as 3-Vect. We hope to have strictly more fully-dualisable objects and hence it can serve are targets for unitary 3d-TQFTs which were previously known to not fully-extend to a point.

Thank You

. . .