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Introduction

Algebraic Unitary Topological

Vector space Hilbert space

Algebra von Neumann algebra

Linear Category W*-category

Tensor Category Bicommutant Category

W∗- categories: “categorified” Hilbert Spaces.

Bicommutant categories: “categorified” of von Neumann algebras.
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Dagger Categories

Definition (Dagger Categories)

A dagger category is a category T equipped with function
(−)† : HomT (X ,Y ) → HomT (Y ,X ) for all pairs of objects X ,Y of T
such that:

for any object X , id†X = idX .

for any morphism f : X → Y , (f †)† = f

for any two morphisms f and g such we have (g ◦ f )† = f † ◦ g †.

The most important dagger category which will show up throughout this
talk is the category of Hilbert spaces Hilb where the †-structure is given
by taking the adjoint of linear maps.
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String Calculus for Dagger Categories

We represent f : X → Y as

f

X

Y

If the direction of f matches the up direction (blue arrow) then we read it
as f , if it is the opposite we read it as f †.
We represent composition by concatenation and it is read down to up. For
example, the diagram

f

X

g

Y

Z

is read as X
f−→ Y

g†
−→ Z .
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W*-categories ∼ “Von-Neumann Algebra-oids”

A ∗-category is a C-linear †-category such that the † is anti-linear on
hom-spaces.
Let T be is a ∗-category, we write T ⊕ for the category whose objects are
formal finite sums of objects of T , and whose morphisms are given by
HomT (⊕Xi ,⊕Xj) := ⊕i ,jHomT (Xi ,Xj).

Definition (W∗-categories)

A W∗-category is a ∗-category T such that EndT (X ) is a von Neumann
algebra for every X ∈ T ⊕.

T is the category with same objects as T , and complex conjugate
hom-spaces. We note this as the first involution (†0).
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Definition (Idempotent completion)

A W∗-category is called idempotent complete if whenever a morphism
p : X → X satisfies p2 = p∗ = p, there exists an object Y and a morphism
ι : Y → X such that ιι∗ = p and ι∗ι = idY .

Definition (Generating set)

A W∗-category T is said to admit a set of generators if there exists a set
of objects such that every non-zero object admits a non-zero map from at
least one of the generators. It is said to admit a generator if the above
set may be taken to consist of a single object.
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Definition (Orthogonal direct sums)

Given a collection of objects Xi in a W∗-category indexed by some set I ,
their orthogonal direct sum is an object X equipped with morphisms
ιi : Xi → X satisfying

ι∗i ιj = δij idXi

∑
ι∗i ιi = idX .

The orthogonal direct sums, if it exists, is denoted ⊕i∈IXi .
Here, the infinite sum

∑
i∈I ι

∗
i ιi is defined as the sup over all finite subsets

I0 ⊂ I of the finite sums
∑

i∈I0 ι
∗
i ιi .

Definition (Cauchy completion)

We call a W∗-category (Cauchy) complete if it admits a generator, is
idempotent complete, and has all direct sums.

We write C⊕̂ for the direct sum completion of the idempotent completion
of a W∗-category C, and call it the Cauchy completion of C.
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vN-algebra and W∗-category

Theorem

Every complete W∗-category T is equivalent to R-Mod for some von
Neumann algebra R.

Let X be a geneartor of T and R := EndT (X )op.

BRop → T and BRop → R-Mod

⋆Rop 7→ X and ⋆Rop 7→ RL
2R

On Cauchy completion, this extends to equivalences,

(BRop)⊕̂
≃−→ T and (BRop)⊕̂

≃−→ R-Mod.

Therefore, T ∼= R-Mod.
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vN-bimodules and W∗-functors

Let T1 and T2 be W∗-categories.
A functor between W∗-categories is a ∗-functor F : T1 → T2 that induces
normal homomorphisms EndT1(T ) → EndT2(F (T )) for all T ∈ T1.

Theorem

Given von Neumann algebras R1 and R2, the functor

Bim(R2,R1) → Func
(
R1-Mod,R2-Mod

)
R2XR1 7→ R2X ⊠R1 −

is an equivalence of categories.
The inverse of sends a functor F : R1-Mod → R2-Mod to the bimodule

R2

(
F (R1L

2R1)
)
R1 .

Intertwiners correspond to natural transformations.
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Monoidal Structure

Given Cauchy complete W∗-categories, their completed tensor product is
given by:

T1⊗̂T2 := (T1 ⊗ T2)⊕̂.

where ⊗ is the tensor product of C-linear categories.
Hilb = (BC)⊕̂ is the unit of the above operation.

Theorem

Given von Neumann algebras R1 and R2, the functor

(R1-Mod) ⊗̂ (R2-Mod) → (R1⊗̄R2)-Mod

(R1H)⊗ (R2K ) 7→ R1⊗̄R2
(H ⊗ K )

is an equivalence of categories.
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Hilb-valued inner product

Definition (Inner Product)

Every W∗-category T admits a canonical Hilb-valued inner product
⟨−,−⟩Hilb : T × T → Hilb given by:

⟨X ,Y ⟩Hilb := pY L
2(End(X ⊕ Y ))pX ,

where pX , pY ∈ End(X ⊕ Y ) are the two projections.

Lemma

Let T be a Cauchy complete W∗-category. Then

T → Func(T ,Hilb) (1)

X 7→ ⟨−,X ⟩

is an equivalence of categories. This corresponds to a statement
corresponding to the Riesz representation theorem.
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Involution on W ∗-functors (†1)

Definition (Adjoint of a W ∗-functor)

Given a functor F : T1 → T2 between Cauchy complete W∗-categories, its
adjoint F † is defined as the composite

F † : T2
≃−→ Hom(T2,Hilb)

−◦F−−−→ Hom(T1,Hilb)
≃−→ T1.

Equivalently, the functor F † : D → C is specified by the requirement that

⟨X ,F †(Y )⟩Hilb
∼= ⟨F (X ),Y ⟩Hilb, (2)

naturally in X and Y .

Nivedita (University of Oxford) 2-Hilb and 3-Hilb November 8, 2024 14 / 44



Definition (For a natural transformation)

Given a natural transformation α : F ⇒ G between functors T1 → T2, the
adjoint natural transformation α† : F † ⇒ G † is specified,〈

X ,F †(Y )
〉
Hilb

〈
F (X ),Y

〉
Hilb

〈
X ,G †(Y )

〉
Hilb

〈
G (X ),Y

〉
Hilb

≃

⟨idX ,(α†)Y ⟩ ⟨αX ,idY ⟩

≃

commutes.

Lemma

The operations F 7→ F † and α 7→ α† assemble to an antilinear equivalence

† : Func(T1, T2) → Func(T2, T1), (3)

and there are natural unitary isos φF : F → F †† and νF ,G : F † ◦ G † → (G ◦ F )†.

We also have α∗ : G ⇒ F defined pointwise as (α∗)X := (αX )
∗, which gives the

antilinear involution ∗ : Func(T1, T2) → Func(T1, T2). This is (†2).
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2-Hilb

Theorem

The assignment R 7→ R-Mod induces an equivalence of bicategories
Mor(vN)

≃→ W∗Cat

Remark: It is in fact a equivalence of tri-involutive monoidal (fully-dagger
monoidal) bi-categories.

vN2 W∗Cat

†0 complex conjugation or op of algebra complex conjugation or op of category

†1 complex conjugation of underlying hilbert space adjoint functor

†2 adjoint of linear intertwiner pointwise ∗ (adjoint of linear maps)

spacial tensor product ⊗̄ Complete tensor product of categories ⊗̂
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2-Hilb-analogies with Hilb

A Hilbert space H A complete W∗-category T
The one dimensional Hilbert space C The W∗-category Hilb
Scalar multiplication · : C× H → H Canonical tensor Hilb× T → T
Inner product ⟨ , ⟩ : H × H → C Hilb-valued inner product T × T → Hilb

This is just a glimpse, lots more listed in the beginning of arXiv:2411.01678
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Bi-involutive tensor W∗-categories
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String calculus for W*-categories

We stack the string diagrams for T and T , separated by a dividing line.
This line comes with a co-orientation, which remembers how the inner
product diagram is read. The conjugate category T has the opposite
local-up direction.〈

X ′,X
〉 ⟨f ′†,f ⟩
−−−−→

〈
Y ′,Y

〉 ⟨g ′,g†⟩
−−−−→

〈
Z ′,Z

〉
.

f

X

g

Y

Z

f ′

X ′

g ′

Y ′

Z ′

There is a unitary isomorphism, JX ,Y : ⟨X ,Y ⟩ ∼−→ ⟨Y ,X ⟩ natural in X ,Y .

Diagrammatically, ⟨ , ⟩ swaps the two strings which makes the
isomorphism J manifest.
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W∗-tensor categories

A ∗-tensor category (T ,⊗, 1, α, l , r) is a ∗-category with a monoidal
structure which is compatible in the sense that

⊗ : T × T → T

is a bilinear functor of ∗-categories, and the associator α and left and right
unitors l , r are unitary.
The string calculus naturally extends to monoidal W∗-categories where the
tensor product of objects is represented by placing corresponding strings in
parallel left to right in T and right to left in T . The tensor product in T
and T are read outwards starting from the dividing line.

A BXY

⟨X ⊗ Y , A⊗ B⟩
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Bi-involutive W∗-tensor categories

A bi-involutive W∗-tensor category is a W∗-tensor category T equipped
with a covariant anti-linear, anti-tensor functor

: T → T

called the conjugate. The structure data of this anti-tensor functor are
denoted

νA,B : A⊗ B
≃−→ B ⊗ A and j : 1 → 1

and which satisfy some diagrams.
The functor is involutive, meaning that for every A ∈ T , we are given
unitary natural unitary isomorphisms

φA : A → A

satisfying φA = φA.
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A⊗ (B ⊗ C ) A⊗ (C ⊗ B)

(A⊗ B)⊗ C (C ⊗ B)⊗ A

(B ⊗ A)⊗ C C ⊗ (B ⊗ A)

idA⊗νB,C

αA,B,C νA,C⊗B

νA,B⊗idC

νB⊗A,C

αC ,B,C

1⊗ A 1⊗ A A⊗ 1 A⊗ 1

A A⊗ 1 A 1⊗ A

j⊗idA

lA ν1,A

idA⊗j

rA νA,1

rA lA

Finally, we require the compatibility conditions φ1 = j ◦ j and
φA⊗B = νB,A ◦ νA,B ◦ (φA ⊗ φB).
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Bi-involutive tensor functors

A tensor functor F : T1 → T2 between bi-involutive ∗-tensor categories is
called a bi-involutive tensor functor if it comes equipped with a unitary
natural transformation

γX : F (X ) → F (X )

satisfying the following coherences:

F (X )⊗ F (Y ) F (X ⊗ Y ) F (Y ⊗ X )

F (X )⊗ F (Y ) F (Y )⊗ F (X ) F (Y ⊗ X )

γY⊗X

F (ν
T1
x,y )µX ,Y

γX⊗γY

µY⊗X
ν
T2
F (X )⊗F (Y )

F (x) F (x)

F (X ) F (X )

F (φ
T1
X )

γXφ
T2
F (X )

γX

Nivedita (University of Oxford) 2-Hilb and 3-Hilb November 8, 2024 23 / 44



String calculus for bi-involutive categories

Similar to the chosen up-direction, there is a chosen right direction,
together these can be thought as the chosen coordinate axes for a string
diagram of a bi-involutive tensor category. We equip our objects with a
normal vector or a co-orientation.
We then represent X by reversing the co-orientation or reflecting along the
up-direction.
This makes ν and φ with the coherences automatically manifest. The unit
object is transparent, so j is also in-built.

X1

f

Y1 X1

f

Y1

f

X1 X2 X1
X1

Y1

f : X1 → Y1 f † : Y1 → X1
f : X1 → Y1

X1 ⊗ X2

X2

X2 ⊗ X1

f

X1

Y1

f
†
: Y1 → X1
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For bi-involutive W∗-tensor category

For a bi-involutive tensor category T , the local up and right directions are
both reversed.
For example, the inner-product

〈
X1 ⊗ X2,Y1 ⊗ Y2

〉
≃

〈
X2 ⊗ X1,Y1 ⊗ Y2

〉
is represented as:

X1 X2 Y1 Y2
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We also have the following isomorphism defined by being an
anti-linear, anti-tensor functor,

⟨X ,Y ⟩ = pY L
2(End(X ⊕ Y ))pX = pY L

2(End(X ⊕ Y ))pX

= pY L
2(End(X ⊕ Y ))pX = pY L2(End(X ⊕ Y ))pX

= ⟨X ,Y ⟩.

We define an isomorphism cX ,Y : ⟨X ,Y ⟩ → ⟨Y ,X ⟩ as the following
composition,

⟨X ,Y ⟩ J−→ ⟨Y ,X ⟩ → ⟨Y ,X ⟩

and c̃X ,Y : ⟨X ,Y ⟩ → ⟨Y ,X ⟩ as the following composition,

⟨X ,Y ⟩ → ⟨Y ,X ⟩ → ⟨Y ,X ⟩

using φX in the last arrow.
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X1 X2 Y1 Y2

X1X2 Y1

Y2 X1 X2Y1 Y2

⟨X1 ⊗ X2,Y1 ⊗ Y2⟩ ⟨Y1 ⊗ Y2,X1 ⊗ X2⟩
X1 X2 Y1

Y2

c̃X1⊗X2,Y1⊗Y2
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Commutant of a tensor category
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Relative Centre

Let ι : T → E be a tensor functor between W∗-tensor categories. The
unitary commutant Z(ι : T → E) of T inside E (denoted, Z(ι)) is the
category whose objects are pairs (X , {eX}), where X is an object of E and

{eX} = (eX ,Y : X ⊗ ιY → ιY ⊗ X )Y∈T

is a collection of unitary isomorphisms, called a half-braiding. The
half-braiding is required to be natural in Y , and to satisfy the following in
E for every Y ,Z ∈ T :

ιY ⊗ X ⊗ ιZ

X ⊗ ιY ⊗ ιZ ιY ⊗ ιZ ⊗ X

X ⊗ ι(Y ⊗ Z ) ι(Y ⊗ Z )⊗ X

idιY⊗eX ,ZeX ,Y⊗idιZ

∼ ∼
eX ,Y⊗Z
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Absorbing objects

An object Ω ∈ T is left absorbing (right absorbing) if it is a
non-left(right)-zero-divisor and for every non-left(right)-zero-divisor X ∈ T
we have Ω⊗ X ∼= Ω (X ⊗ Ω ∼= Ω).
The object is absorbing if it is both left absorbing and right absorbing.
The absorbing subcategory T abs is the completion of the full subcategory
on absorbing objects.

Lemma

Given a tensor functor ι : T → E , for a complete W∗-tensor category
which admits weakly absorbing objects, the map Z(ι) → Z(ι|T abs) is
fully-faithful.

Nivedita (University of Oxford) 2-Hilb and 3-Hilb November 8, 2024 30 / 44



Bicommutant Categories
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Definition of Bicommutant Category

Let T be a Cauchy complete bi-involutive W ∗-tensor category that admits
absorbing objects. This gives us two dagger-monoidal functors,

L : T → End(T abs) given by X 7→ X ⊗−
R : T mop → End(T abs) given by X 7→ − ⊗ X

A bicommutant category T is such a category equipped with a unitary
natural isomorphism γL : L( ) ⇒ L( )† which make L a bi-involutive
tensor W∗-functor. Using the associators of T , L and R induce maps

T →Z(R : T mop → End(T abs))

T mop →Z(L : T → End(T abs))

We require these to be equivalences. We require a lot of diagram to
commute, which we now list.

Nivedita (University of Oxford) 2-Hilb and 3-Hilb November 8, 2024 32 / 44



For all X ∈ T , Ω1,Ω2 ∈ T abs, γL induces a map

γLX : ⟨Ω1 ⊗ X ,Ω2⟩Hilb → ⟨Ω1,X ⊗ Ω2⟩Hilb

We represent this map diagrammatically by:

Ω2X
Ω1
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The coherences for L being bi-involutive tensor functors are the following:

⟨X ⊗ Y ⊗ Ω1,Ω2⟩ ⟨Y ⊗ Ω1,X ⊗ Ω2⟩

⟨Y ⊗ X ⊗ Ω1,Ω2⟩ ⟨Ω1,Y ⊗ X ⊗ Ω2⟩

γL
X

νX ,Y γL
Y

γL
Y⊗X

which is manifestly encoded by the diagrammatic calculus.

Ω1

X

Ω2

Y

Ω1

X

Ω2

Y

=
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Using γL, we define γR :

〈
X ⊗ Ω1,Ω2

〉 〈
Ω1,Ω2 ⊗ X

〉
〈
Ω2,X ⊗ Ω1

〉 〈
Ω2 ⊗ X ,Ω1

〉c̃X⊗Ω1,Ω2

γR
X

(γL
X )

−1

c̃Ω2⊗X ,Ω1

Diagrammatically, this involves changing the preferred dividing line,

performing γLX
−1

and changing the preferred line again.
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X

X
Ω1

Ω2

X
Ω2

c̃X⊗Ω1,Ω2

Ω1
Ω2

Ω1

c̃Ω2⊗X,Ω1

Ω1 XΩ2

γL
X
−1

This makes R a bi-involutive tensor functor.
Nivedita (University of Oxford) 2-Hilb and 3-Hilb November 8, 2024 36 / 44



⟨Y ⊗ Ω1 ⊗ X ,Ω2⟩ ⟨Y ⊗ Ω1,X ⊗ Ω2⟩

⟨Ω1 ⊗ X ,Ω2 ⊗ Y ⟩ ⟨Ω1,X ⊗ Ω2 ⊗ Y ⟩

γL
X

γR
Y γR

Y

γL
X

Y Ω1
X

Ω2

Y Ω1
X

Ω2

=
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Finally, when when all three of Ω1,Ω2,Ω3 are absorbing, we require the
following diagram to commute.

〈
Ω1,Ω3 ⊗ Ω2

〉 〈
Ω2 ⊗ Ω1,Ω3

〉
〈
Ω3 ⊗ Ω2,Ω1

〉 〈
Ω2,Ω1 ⊗ Ω3

〉
γR
Ω2

−1

c̃Ω1,Ω2⊗Ω3
γL
Ω1

γR
Ω3

−1

We represent this by two morphisms, the LHS of the diagram below

indicates the morphism γRΩ3

−1 ◦ γLΩ1
◦ γRΩ2

−1
, and the RHS is the morphism

c̃Ω1,Ω2⊗Ω3 .
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Ω1

Ω2

Ω3 Ω1

Ω2

Ω3

=
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Strings on Cylinder

We can put the dividing line anywhere and evaluate, as long as there is at
least one string on each side of it.
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Concluding Remarks
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Examples

T = (T ,⊗, I, α, l , r , , ν, j , φ, γL) be a bicommutant category. Some
examples include:
(Hilb,⊗)
(Bim(R),⊠R) for some von Neumann algebra R.
(Hilb[G ]) for a discrete group G
(Repsoliton(A),⊠A) for a conformal net A

When A is the WZW net for a compact connected group G at level
k , this is Repk(ΩG )

When A is the Virasoro net, this is Repc(Diff(S1)),⊠) at some fixed
central charge c ∈ {16/m(m + 1) : m2} ∪ [1,∞).
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Upcoming Work

Work in Progress includes understanding modules over Bicommutant
categories and their “categorified” Connes-fusion. A candidate definition
is, given M,N right and left T -modules respectively, we can define their
fusion as

M ⊠T N = pN EndT -Mod(M ⊕ N)abspM

Constructing the 0 and 1 piece of a Segal (Functorial) Chiral CFT, as a
functor,

Cobconf0,1,2 → Mor(BicommCat)

where Mor(BicommCat) may serve as 3-Hilb in place of Mor(TensCat)
which is usually taken as 3-Vect. We hope to have strictly more
fully-dualisable objects and hence it can serve are targets for unitary
3d-TQFTs which were previously known to not fully-extend to a point.
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Thank You

· · ·
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