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Motivation



OPEs are hard

Correlation functions of local operators are fundamental observables
in any QFT

The OPE (together with the vevs) encodes any correlation function of
local operators and is strongly constrained by associativity (a.k.a.
crossing symmetry)

Oi(x)

Oj(y)
=

∑
k ck

ij(x − y) Ok(x)

In general it is incredibly hard to access this data and without
conformal symmetry the OPE is typically not convergent

To make progress it is convenient to add symmetries to the problem

In this case: Conformal and/or supersymmetry
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Protected sectors in SUSY QFTs

This is most evident in 2D, where the conformal group is enhanced to
the infinite-dimensional Virasoro symmetry

In this case the associativity of the OPE, together with these
symmetries sometimes allows one to completely solve the theory

Belavin,Polyakov,Zamolodchikov

In higher dimensions, the (super)conformal algebra is finite
dimensional so in general we do not expect the same powerful
methods to apply

However, in the presence of supersymmetry we can often still obtain
exact OPE data in particular protected sectors of the theory

These put strong constraint on the full OPE and are able to provide
powerful non-perturbative results
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Protected sectors in SUSY QFTs

Often these sectors can be obtained by twisting the original theory,
or equivalently by passing to the cohomology of a particular nilpotent
supercharge

Examples:

• Any 4D N = 2 SCFT contains a sector isomorphic to a 2D VOA
Beem,Lemos,Liendo,Peelaers,Rastelli,van Rees

• Any 3D N = 4 SCFT contains a sector isomorphic to a 1D
topological QM [Pufu,Dedushenko,Yacoby,Fan,Beem,Peelaers,Rastelli]

More generally any observable that is computable through
supersymmetric localisation belongs to some protected sector
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The holomorphic twist

In this talk we consider 4D N = 1 SQFTs

The supercharge to find a 2D VOA subsector is no longer available

Twisting with a generic supercharge results in a 4D holomorphic
theory or higher-VOA!

This is the largest possible protected sector and therefore contains
much more information than the VOA twist, including black hole
states!

The price we have to pay is that this structure is mathematically more
complicated and not as well understood as their 2D counterparts

It only has a perturbative definition

In this talk we will mostly consider SCFTs but many of the
constructions go through without conformal symmetry where the
holomorphic twist provides a powerful RG invariant!
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Warm up: 2D VOAs



2D VOAs

The algebraic structure underlying a 2D (chiral) CFT is given by a
vertex operator algebra or VOA

• State space V
• State-operator map

V → (End V )[[z]] : O 7→ O(z) =
∑
n∈Z

{O , •}n
zn+1

• Translation operator T that acts as (TO)(z) = ∂zO(z)
• Vacuum vector |0〉 such that |0〉 (z) = IdV

The OPE can be rewritten in terms of the brackets {• , •}n as

O1(z)O2(w) =
∑
n∈Z

{O1 , O2}n (w)

(z − w)n+1
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From VOAs to Lie conformal algebras

Conversely the brackets are useful to unpack the OPE

{O1 , O2}n (0) =
∮ dz

2πi zn O1(z)O2(0)

It can be useful to collect the non-negative modes in a generating
function called the λ-bracket

{O1 λ O2} ≡
∮

S1

dz
2πi eλz O1(z)O2(0) =

∑
n≥0

λn

n! {O1 , O2}n

A vector space V equipped with a λ-bracket and a translation
operator defines a Lie conformal algebra

Any VOA defines a Lie conformal algebra simply by forgetting the
regular part of the OPE

A generalisation of this structure will be very useful in
higher-dimensional computations
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∞-dim symmetry in VOAs

Note that any holomorphic operator O(z) can be thought of as a
current for a global symmetry with conservation law

∂̄O(z) = 0 .
We can then construct a new current ρ(z)O(z), where ρ is any ∂̄-closed
function,

ρ ∈ H 0,0
∂̄

(C\0) = C[z, z−1]

so we naturally find an infinite-dimensional symmetry algebra

Phrased differently, the action of the bracket {O, •}n can be
understood as inserting the topological line operator LO

n obtained by
integrating znO over a circle

O1(z)

LO
n

{O,O1}n(z) =
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Example: Virasoro VOA

The Virasoro algebra Virc is a central extension of the Witt algebra of
vector fields on a punctured disc

Choosing a basis Ln = −zn+1∂z , the commutation relations are

[Lm,Ln] = (m − n)Lm+n + c ϕ(Lm,Ln) ,

the central extension is defined by a 2−cocycle, ϕ ∈ H 2(Witt)

ϕ(Lm,Ln) =
1
12n(n2 − 1)δm+n,0

In physical applications, the Virasoro algebra is obtained as the mode
algebra of the holomorphic stress tensor T (z)

T (z) =
∑
n∈Z

Ln

zn+2
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Example: Virasoro VOA

We can define the λ-bracket of the stress tensor with a primary
operator as

{T λ O} (0) =
∮

S1

dz
2πi eλzT (z)O(0)

= L−1O(0) + λL0O(0) + λ2 L1O(0) + · · ·
= ∂O(0) + h λO(0)

From which we can read of the singular OPE

T (z)O(0) ∼ h O(0)
z2 +

∂O(0)
z

Similarly for two stress tensors we have

{T λT} (0) = λ3 c
12 + (2λ+ ∂)T (0)

and we recover the usual singular OPE

T (z)T (0) ∼ c/2
z4 +

2T (0)
z2 +

∂T
z
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Higher-VOAs from
holomorphic FTs



Higher-VOAs

The definition in higher dimensions closely follow the 2D ones but
the theory is much less developed [Costello, Gwilliam, Williams, ...]

Given any ∂̄-closed holomorphic operator O(z1, z2)we find an infinite
tower of conserved currents ρO(z)where ρ are elements of the
Dolbeault cohomology

ρ ∈ H 0,i
∂̄

(C2\0) =
{

C[z1, z2] , i = 0
C[∂1, ∂2]ωBM , i = 1

For ρ in the degree 0 part this results in a direct generalisation of the
positive modes in 2D

{O1 , O2}n1,n2
(0) =

∮
S3

d2z
(2πi)2 zn1

1 zn2
2 O1(z)O2(0) ni ≥ 0

while the negative modes can be obtained by picking ρ from the
degree 1 part

{O1 , O2}n1,n2
(0) =

∮
S3

d2z
(2πi)2 ∂

−n1−1
1 ∂−n2−1

2 ωBM(z)O1(z)O2(0) ni ≤ −1

As in 2D these brackets give us∞many codim-1 topological defects
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Higher-VOAs and L∞ algebras

Unlike in 2D, these brackets only satisfy the Jacobi identity
homotopically and form an L∞ structure

Higher homotopies are captured by a collection of higher brackets
[•, · · · , •]n satisfying a collection of Jacobi-like identities

[[x1, x2]2 , x3]2 + [[x2, x3]2 , x1]2 + [[x3, x1]2 , x2]2 =

= d [x1, x2, x3]3 + [dx1, x2, x3]3 + [x1, dx2, x3]3 + [x1, x2, dx3]3

Collecting the non-negative modes we can again define the
λ-bracket as follows

{O1 λ O2} =

∮
S3

d2z
(2πi)2 eλ·zO1(z)O2(0)

Similarly, for the higher brackets we can introduce higher n−ary
λ−brackets {

O1 λ1O2 λ2 · · · λn−1On
}

which can similarly be defined as integrals over the configuration
space of n − 1 points but this definition quickly becomes very tedious
to apply
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Example: Higher-Virasoro VOA

The higher-Virasoro algebra 2-VirA,C is a central extension of the
higher-Witt algebra 2-Witt of vector fields on a punctured 2-disc

Analogous to before we define the basis

L+
m,n = ρm+1,n∂+ L−

m,n = ρm,n+1∂−

Note that only non-zero when m, n are both non-negative or both
negative

The non-vanishing commutators are given by[
L+

m,n , L+
m′,n′

]
=(m − m′)L+

m+m′,n+n′[
L−

m,n , L−
m′,n′

]
=(n − n′)L−

m+m′+1,n+n′−1[
L+

m,n , L−
m′,n′

]
=n L+

m+m′+1,n+n′−1 − (m′ + 1)L−
m+m′,n+n′[

L−
m,n , L+

m′,n′

]
=(m + 1)Lm+m′,n+n′ − n′ L+

m+m′+1,n+n′−1
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Example: Virasoro VOA

The central extensions of the higher-Witt algebra are classified by
Gelfand-Fuks cohomology classes ϕ ∈ H 2(2-Witt)which is known to
be two-dimensional [Saberi,Williams]

Unlike in 2D the central extensions do not appear in the 2-bracket
but in the 3-bracket

[
Lα

m,n , Lβ
k,l , Lγ

r,s

]
= δm+k+r,0δn+l+s,0

(
Aψαβγ

1 + C ψαβγ
2

)
As we will see next, these coefficients A and C can be related to the
conformal anomalies of 4d N = 1 SCFTs
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The holomorphic twist



Holomorphic FTs from N = 1 SCFTs

Consider a 4D N = 1 SCFT in Euclidean space

The superconformal algebra is given by su(4|1)with generators

Pαα̇ Kα̇α Mαβ Mα̇β̇ Qα Q̃α̇ Sα S̃α̇ R
We label fields by their charges (∆, j1, j2, r) under the Cartan or in
short [j1, j2](r)∆

The superconformal algebra contains two spinor supercharges Qα

and Q̃α̇, with commutation relations{
Qα , Q̃α̇

}
= i Pαα̇

{
Q̃α̇ , Q̃β̇

}
= {Qα , Qβ} = 0

where Pαα̇ = σµ
αα̇Pµ are the translation generators

We can obtain a holomorphic theory by passing to the cohomology
of a nilpotent supercharge Q = Q−
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Holomorphic FTs from N = 1 SCFTs

We can obtain a holomorphic theory by passing to the cohomology
of a nilpotent supercharge Q = Q−

This choice selects a complex structure such that {z α̇, z̄ α̇} = {x+α̇, x−α̇}
are (anti-)holomorphic coordinates on C2

Moreover, notice that {
Q, Q̃α̇

}
= ∂z̄α̇

Hence, anti-holomorphic translations are exact and the twisted
theory is holomorphic in the cohomological sense

The choice of twisting supercharge breaks the rotation group to
SU(2)2 generated byMα̇β̇

The twisted rotation generator MR = M+− − R is unbroken and
extends the SU(2) to U(2) generating holomorphic rotations of the z α̇

The fields in the twisted theory are labelled by their SU(2)1 Cartan
and their R-twisted spin
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The semi-chiral ring

The space of operators surviving the twist can be defined as the
Q-cohomology of local operators

{Q,O} = 0 O 6= {Q,O′} = 0
Since the operators are anihilated by one chiral supercharge we call
them semi-chiral [Budzik,Gaiotto,Kulp,Williams,Wu,Yu]

In superconformal theories operators can be grouped in multiplets by
acting on a superconformal primary with superconformal and special
conformal generators [Cordova,Dumitrescu,Intriligator]

XȲ [jL, jR](r)∆ X ,Y ∈ {L ,A1 ,A2 ,B1}
For generic ∆ supercharges and derivatives act freely and operators
in such multiplets are Q-closed only if they are Q-exact

When ∆ saturates some BPS bounds some descendent operators are
missing and the multiplet becomes short

16



The semi-chiral ring

Harmonic representatives of the cohomology satisfy{
Q , Q†} = ∆+

3
2r +

1
2 jL = 0

Note that any short (chiral) multiplet contributes one operator to the
Q-cohomology

The OPE between two semi-chiral operators in necessarily regular
hence these operators form the semi-chiral ring

O1(z)O2(0) ∼ ck
12Ok(0) + Q-exact

Since anti-holomorphic translations are exact, non-holomorphic
terms in the OPE are exact

The OPE is at most meromorphic but due to Hartog’s theorem there
are no functions on C2 singular at one point hence the OPE is regular
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Semi-chiral superfields

In order to find more interesting structure it will be important to keep
track of their descendants

To this end it will be useful to introduce (chiral) superfields

O = edz̄α̇Q̃α̇O = O(0) + O(1) + O(2)

where the usual superspace coordinate θα̇ transforms as a
anti-holomorphic one-form in the twisted theory

Similarly, the supercovariant derivative is given by D− = Q + ∂̄ and we
have the holomorphic descent relations

QO(k) + ∂̄O(k−1) = (QO)(k)

we call a superfield semi-chiral if

D−O = 0
which simply means that its 0th component is a semi-chiral operator

We can identify the Q-cohomology with the space of semi-chiral
superfields modulo the image of D−

18



Brackets in the holomorphic twist

Since the twisted theory is holomorphic we can apply all the tools
introduced above

We can introduce the λ-bracket in the twisted theory as

{O1 λ O2} =

∮
S3

d2z
(2πi)2 eλ·zO1(z)O2(0)

=

∫
C2

d2z
(2πi)2 eλ·zQ (O1(z)O2(0))

This integral is only non-vanishing when the integrand is a (2, 2) form

Hence we see that this bracket captures the singular terms in the
OPEs

O(1)
1 (z)O(0)

1 (0) and O(0)
1 (z)O(1)

1 (0)
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Brackets in the holomorphic twist

In perturbation theory we can rewrite this as
[Budzik,Gaiotto,Kulp,Williams,Wu,Yu]

{O1 λ O2} =

∫
C2

d2z
(2πi)2 eλ·zQ : O1(z)O2(0) :

where : · · · : denotes the operation of performing all possible Wick
contractions

This definition generalises immediately to higher brackets{
O1 λ1 · · · λn−1 On

}
=

n−1∏
k=1

∫
C2

d2zk

(2πi)2 eλk ·zk Q : O1(z1) · · ·On−1(zn−1)On(0) :

For more on the the structure of these brackets and more general
brackets encoding also regular the terms in the OPE see Jingxiang’s
talk next week
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Stress tensors and conserved currents

In this talk we take a different direction and will look more closely at
what aspects of the physical theory are encoded in these brackets

First of all, any N = 1 SCFT contains a stress tensor in an A1Ā1[1, 1](0)3
multiplet Sµ which contains the R-symmetry current as its top
component

Therefore this multiplet gives rise to a semi-chiral operator and
superfield Sα̇ = D+S+α̇

Similarly, if the theory enjoys a flavour symmetry the spectrum of the
theory contains a protected conserved current which sits in a
A2Ā2[0, 0](0)2 conserved current multiplet J

This multiplet gives rise to a semi-chiral operator and supermultiplet
J = D+J

In the remainder of this talk we will carefully study the brackets of
these operators and show how they encode the anomalies of the
physical theory
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Flavour anomalies from λ−brackets

The binary bracket λ-bracket is completely fixed by SU(2) covariance
and anti-symmetry in the adjoint g indices{

Ja
λ Jb} = f ab

cJc

and the normalisation fixed the constant factor

Similarly the ternary bracket is fixed by SU(2) covariance, symmetry
and the graded commutativity of the bracket to take the form{

Ja
λ1Jb

λ2 Jc} = k dabc(λ1, λ2)

where dabc is the symmetric invariant tensor on g

In order to uncover the meaning of k let us explicitly compute the
binary and ternary brackets
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Flavour anomalies from λ−brackets

The OPE between conserved current superfields has been computed
for generic interacting field theories [Osborn,Fortin,Intriligator,Stergiou]

Acting with the supercovariant derivatives one can select the correct
descendant and explicitly compute the binary bracket to fix the
normalisation

The perturbative definition of the ternary bracket does not apply in a
generic interactive theory hence we have to modify it a bit

In a free theory the currents are quadratic in free fields so the fully
Wick contracted expression is proportional to the identity

Therefore we can compute it equivalently by inserting the
three-point function

{J λ1 J λ2 J} =

∫
(C2)2

d2z1d2z2

(2πi)4 eλ1·z1+λ2·z2 ∂̄ 〈J(z1)J(z2)J(0)〉

Computing the relevant descendant three-point function we find
that the coefficient k is precisely the G flavour ’t Hooft anomaly!
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Higher Kac-Moody algebra

Defining the modes of the current as

Ja
m,n · O(0) ≡ Ja,Om,n =

∫
C2

d2z
(2πi)2 ρm,nJa(z)O(0)

we find the commutation relations[
Ja

m,n , Jb
k,l
]
= f ab

cJc
m+k,n+l

and the L∞ three-bracket[
Ja

m,n , Jb
k,l , Jc

r,s
]
= k dabcδm+k+r,0δn+k+s,0(ks − lr) .

Analogous to the higher-Virasoro VOA this gives a higher analogue of
the Kac-Moody VOA
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Conformal anomalies from λ−brackets

The binary bracket λ-bracket is again completely fixed by SU(2)
covariance {

Sα̇ λ Sβ̇

}
= λα̇Sβ̇ + λβ̇Sα̇ + ∂α̇Sβ̇

and the normalisation fixed the constant factor

Similarly the ternary bracket is fixed by SU(2) covariance and the
graded commutativity of the bracket to take the form{

Sα̇ λ1Sβ̇ λ2 Sγ̇

}
= AΛvec + C ΛN=4

where
Λvector = − 1

24π2 (λ1, λ2)
2
[
λ1α̇εβ̇γ̇ + λ2β̇εγ̇α̇ − (λ1γ̇ + λ2γ̇)εα̇β̇

]
ΛN=4 =

1
3π2λ1α̇λ2β̇(λ1 + λ2)γ̇(λ1, λ2) .

Similarly computing the OPE and 3pt function of the appropriate
descendant we find that A and C are given by

A =
4
3 (3c − 2a) C = 16(a − c)
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Summary and outlook



Summary

In talk we have introduced the holomorphic twist of N = 1 SCFTs and
shown how it gives rise to a holomorphic field theory

Similar to 2D CFTs, this theory experiences an infinite dimensional
symmetry enhancement allowing for many explicit computations

Although the OPEs between semi-chiral operators is regular, we have
introduced a variety of higher operations which encode a wealth of
information of the physical theory

Two-brackets encode the singular OPE between operators and their
descendants, while three-brackets encode anomalies

In particular we have shown how JJJ brackets encode the ’t Hooft
anomalies and SSS brackets encode conformal anomalies
Similarly, one can show that JJS anomalies encode the flavour levels
kG
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Outlook

We have left many questions untouched:
• With extended supersymmetry the twisted theory remains
supersymmetric and has a richer structure. One can perform an
additional twist and obtain a 2D VOA [Williams,Saberi-WIP]

• So far the holomorphic twist only has a perturbative definition. A
non-perturbative description will be instrumental in improving
our understanding of black hole states/dualities/...

• In order to improve our understanding it would be useful to have
a better understanding of the representation theory of the higher
VOAs we encountered [Scheinpflug]

• An alternative approach to obtain non-perturbative insights is by
studying the holomorphic twist of Argyres-Douglas theories
using their N = 1 Lagrangian description [WIP]

• Many physical operations do not yet have a good understanding
in the holomorphic twist, such as Higgsing [WIP]

• Can we extract the full (classical) vacuummoduli space from the
holomorphic twist?

27



Thank you!
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