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Review - Some Facts

• They were discovered/invented by Milnor as total spaces of
S3-bundles over S4.

• It was later found that there exist additional exotic 7-spheres,
which cannot be obtained by Milnor’s construction.

• One can construct all of them as Brieskorn spheres or as
twisted spheres.

• Exotic 7-spheres are homeomorphic to the topological
7-sphere (shown via Morse theory).

• But they are not diffeomorphic to the ordinary 7−sphere
(shown computing a differentiable invariant).

• Milnor’s bundles were the first examples of exotic manifolds.
• There are no exotic manifolds for dimensions 1, 2 and 3.
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Review - Illustration
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Review - The Construction (1)

Exotic spheres are not
• Coset spaces.
• Naturally embedded in R8.
• Principal bundles.

However, they can be described as non-principal S3 bundles over
S4, which is Milnor’s original construction. [1]

[1] J. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. Math.
64 (1956) 399.
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Review - The Construction (2)

The original bundle construction goes as follows:
• The base space is S4, with the usual stereographic projection

atlas, given by the coordinates
ΨN : UN = (S4 − North Pole) −→ R4 ' H (quaternions)
and similarly for the south pole.

• The fibre is F = S3 ' H∗ (quaternions with unit norm).
• The transition function, in coordinates, is:

(H 3 z , y ∈ H∗) 7→ (H 3 1
z ,

(zhyz l)
||z||h+l ∈ H∗).

=⇒ structure group is G = SO(4).
• Hence, we have that F = G/H , for H = SO(3),

since S3 = SO(4)/SO(3).
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Review - The Construction (3)

Regarding their relation to 7-spheres:
• Milnor was able to prove that if h + l = 1, then the total space

of the bundle is homeomorphic to the topological 7-sphere.
• He also showed that if (h − l)2 6= 1(mod7), then the total

space cannot be diffeomorphic to the standard 7-sphere.
• The simplest example of a pair (h, l) which defines an exotic

sphere is (2,−1), i.e. the Gromoll-Meyer sphere.
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Geometry - Motivation

Milnor’s exotic spheres are interesting from the point of view of
supergravity for the following reasons:

• They are compact seven-dimensional manifolds with a unique
spin structure .
=⇒ suitable for M-theory compactifications.

• They have been shown to support numerous families of
Einstein metrics (non-constructive!).
=⇒ even more suitable for M-theory compactifications
(Freund-Rubin).
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Geometry - Kaluza-Klein and Abelian Bundles

K-K Ansatz and Bundle Interpretation

gµν︸︷︷︸ dxµdxν + ϕ2( Aµ︸︷︷︸ dxµ + dx5)2 = gMN︸︷︷︸ dxM dxN

Base metric Connection Total space metric

The (Riemannian) Kaluza-Klein metric on the total space obtained
this way is well-defined, and it makes the horizontal and vertical
subspaces orthogonal to each other.
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Geometry - Kaluza-Klein and Principal Bundles

Ingredients

• Base = M ; metric on the base = gµν(x).
• Fibre = F = G; metric on the fibre = hij(y) - it is written in

non-coordinate basis: hij(y) = h(ei , ej).
• Structure Group = G; connection on the bundle =

Ai
µ(x) ‘‘ ∈ Lie(G)× Ω1(Uα)”

Kaluza-Klein metric on the total space [2]

gMN =

(
gµν(x) + hij(y)Ai

µ(x)A
j
ν(x) Ai

µ(x)hij(y)
hij(y)Aj

ν(x) hij(y)

)
[2] Y.M. Cho, Higher-dimensional unifcations of gravitation and gauge
theories, J. Math. Phys. 16 (1975) 2029.
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Kaluza-Klein metric on the total space [2]

gMN =

(
gµν(x) + hij(y)Ai

µ(x)A
j
ν(x) Ai

µ(x)hij(y)
hij(y)Aj

ν(x) hij(y)

)
[2] Y.M. Cho, Higher-dimensional unifcations of gravitation and gauge
theories, J. Math. Phys. 16 (1975) 2029.
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(1+xµxµ)2

• Fibre = F = G; metric on the fibre = hij(y) - it is written in
non-coordinate basis: hij(y) = h(ei , ej). = δij

• Structure Group = G; connection on the bundle =
Ai

µ(x) ‘‘ ∈ Lie(G)× Ω1(Uα)” =
(

1
x2+1

)
2ηi

µνxν
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= S7

round

[2] Y.M. Cho, Higher-dimensional unifcations of gravitation and gauge
theories, J. Math. Phys. 16 (1975) 2029.
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Geometry - Kaluza-Klein and Associated Bundles

Ingredients

• Base = M ; metric on the base = gµν(x).
• Fibre = F = G/H ; metric on the fibre = hαβ(y).
• Structure Group = G; connection on the principal bundle =

Ai
µ(x) ‘‘ ∈ Lie(G)× Ω1(Uα)”.

• Ki
α(y), which intertwines fibre and gauge field (it is related

to the vector fields that generate the action of G on G/H ).

Kaluza-Klein metric on the total space [3]

ḡMN =

(
gµν + hαβKi

αKj
βAi

µAj
ν Ai

µKi
αhαβ

hαβAi
νKi

β hαβ

)

[3] R. Percacci and S. Randjbar-Daemi, Kaluza-Klein theories on bundles
with homogeneous fibers. 1, J. Math. Phys. 24 (1983) 807.
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ḡMN =

(
gµν + hαβKi

αKj
βAi

µAj
ν Ai

µKi
αhαβ

hαβAi
νKi

β hαβ

)

[3] R. Percacci and S. Randjbar-Daemi, Kaluza-Klein theories on bundles
with homogeneous fibers. 1, J. Math. Phys. 24 (1983) 807.

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 13 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

Geometry - Kaluza-Klein and Associated Bundles

Ingredients
• Base = M ; metric on the base = gµν(x).

• Fibre = F = G/H ; metric on the fibre = hαβ(y).
• Structure Group = G; connection on the principal bundle =

Ai
µ(x) ‘‘ ∈ Lie(G)× Ω1(Uα)”.

• Ki
α(y), which intertwines fibre and gauge field (it is related

to the vector fields that generate the action of G on G/H ).

Kaluza-Klein metric on the total space [3]
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Geometry - The Gromoll-Meyer Sphere

Explicit Ingredients [4]

• Base = S4; gµν(x) = 4dxµdxµ

(1+xµxµ)2
.

• Fibre = SO(4)/SO(3) = S3 = SU (2); hαβ(y) = δαβ .
• Structure Group = SO(4); we use so(4) ' su(2)⊕ su(2) :

Ai
µ =


Aα

µ = −η̄αµν
xν

x2+1

Aî
µ = − (x−a)2(x−b)2 ηî

µν

(x−a)2(x−b)2+ρ2[(x−a)2+(x−b)2]

(
ρ2(x−a)ν
(x−a)4 + ρ2(x−b)ν

(x−b)4

)
• Kγ

α = δαγ ; using S3 = {(X ,Y ,Z ,W ) s.t. X2 + Y 2 + Z 2 + W 2 = 1}:

Kî
α =

 1− 2
(
W 2 + X2

)
−2(WZ + XY ) 2WY − 2XZ

2(WZ − XY ) 1− 2
(
W 2 + Y 2

)
−2(WX + YZ )

−2(WY + XZ ) 2WX − 2YZ 2
(
X2 + Y 2

)
− 1



[4] TSG, Exotic Spheres’ Metrics and Solutions via Kaluza-Klein
Techniques, JHEP 100 (2023).
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Geometry - Known Properties and Unknown Properties

• The expression in the previous slide is a well-defined (family
of) Riemannian metric(s) on a Gromoll-Meyer sphere.

• By construction, the ansatz solves the four-dimensional
Kaluza-Klein reduction of the action.

• This consists of plugging the ansatz into the Einstein-Hilbert
action and integrating over the fibre.

• What are the main properties of these geometries, i.e.
isometries, positivity of Ricci tensor, and so on?

• Is a static spacetime of the form Σ× R physically allowed?
• How does the instantons’ moduli space enter the game?
• Does the metric solve Einstein’s equations for some choice of

moduli?
• Can the solution above be uplifted to a solution of

supergravity with appropriate fluxes?
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• Is a static spacetime of the form Σ× R physically allowed?
• How does the instantons’ moduli space enter the game?

• Does the metric solve Einstein’s equations for some choice of
moduli?

• Can the solution above be uplifted to a solution of
supergravity with appropriate fluxes?
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Geometry - Quaternions and the Metric [5]

Metric with Tensor Components

ḡMN =

(
gµν + hαβKi

αKj
βAi

µAj
ν Ai

µKi
αhαβ

hαβAi
νKi

β hαβ

)How Ugly K was

Kγ
α = δαγ , Kî

α =

 1− 2
(
W 2 + X2

)
−2(WZ + XY ) 2WY − 2XZ

2(WZ − XY ) 1− 2
(
W 2 + Y 2

)
−2(WX + YZ )

−2(WY + XZ ) 2WX − 2YZ 2
(
X2 + Y 2

)
− 1


Vielbein with Quaternions
Let ds2 = Ea ⊗ Ea + εi ⊗ εi . Treat S3 as a quaternion y with
|y| = 1, and denote the two su(2) gauge fields as A, B, then:
Ea = dxm Em

a︸︷︷︸
S4

, ε = dyȳ︸︷︷︸
S3

+A − yBȳ︸︷︷︸
‘‘Kî

αAî
µ”

Questions: what is the Ricci and what are its properties?
What is the isometry of the Kaluza-Klein metric?

[5] D. S. Berman, M. Cederwall and TSG, Curvature of an Exotic
7-sphere, arXiv:2410.01909.
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‘‘Kî
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Geometry - Quaternions and Instantons

k = 1 (regular)

B = Im((x̄−ξ̄)dx)
(λ2+|x−ξ|2) ,

G = λ2dx∧dx̄
(λ2+|x−ξ|2)2 .

k = 2 (singular)
Let xa = x − a and xb = x − b .

A = 1

1+
λ2a

|xa |2
+

λ2b
|xb|2

(
λ2

a Im(x̄adx)
|xa |4 +

λ2
b Im(x̄bdx)

|xb|4

)
.
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Question: What is the field strength and how can it be regularised?
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Geometry - Quaternions and Instantons
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a Im(x̄adx)
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b Im(x̄bdx)
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)
.

Question: What is the field strength and how can it be regularised?
Is there some symmetry enhancement for some choices of moduli?
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Geometry - Curvature

Ricci Tensor

Rab = (RS4)ab −
1

2
Fa

ciFbc
i , Rij = 2δij +

1

4
F abiFab

j ,

where
F = F − yGȳ and F = dA + A ∧ A, G = dB + B ∧ B.

Ricci Scalar
R = RS4 + RS3 − 1

4F
abiFab

i .
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Geometry - Isometries

Isometries of the Full Metric
Mathematicians say that the maximum isometry of an exotic
sphere is SO(3)× O(2). Hence, the aim is finding it.

Isometries of the Fibre
x-dependent isometries of the fibre, in metrics of the Kaluza-Klein
type, coincide with gauge transformations.

Isometries of the Base
The SO(5) isometries of the base act non-trivially on the gauge
field and field strength.
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Geometry - Field Strength Moduli

Instanton moduli vs Kaluza-Klein Moduli
The instanton moduli are not moduli of the Kaluza-Klein metric.
One should quotient out the isometries of the base.

k = 1 Case

ξ 7→ ξ′ = −
(a−ξc)−1(b−ξd)+ λ2 c̄d

|a−ξc|2

1+
λ2|c|2
|a−ξc|2

,

λ 7→ λ′ = λ
|a−ξc|2+λ2|c|2 .

ξ = 0, λ = 1 is a fixed point.

k = 2 Case
There is no fixed point. However, there is a natural choice:
λa = λb = λ and b = −a, Im(a) = 0.
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Geometry - Instantons Regularisation

k = 2 Field Strength (singular)
Let x + a = x+ and x − a = x−. Then:

F =
λ2

(|x+|2|x−|2 + λ2|x+|2 + λ2|x−|2)2
×

(
|x+|2(λ2 + |x+|2)

x̄−dx ∧ dx̄x−
|x−|2

+

+ |x−|2(λ2 + |x−|2)
x̄+dx ∧ dx̄x+

|x+|2
− λ2(x̄+dx ∧ dx̄x− + x̄−dx ∧ dx̄x+)

)
.

k = 2 Field Strength (regular)

F =
4/3

((1 + |x|2)2 + 4
3 | Im x|2)2

×

(
Q0dx ∧ dx̄+

+ Q1(
Im x
| Im x|

dx ∧ dx̄ − dx ∧ dx̄ Im x
| Im x|

) + Q2
Im x
| Im x|

dx ∧ dx̄ Im x
| Im x|

) .

Where Q1,Q2,Q3 are functions of |x| and |Imx|.

Symmetry Enhancement!
SO(3) symmetry: rotations in Im(x).
Moreover, there is a SO(2) subgroup of the SO(5) isometries of
the base, whose action is equivalent to a gauge transformation.
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Geometry - Summary of Results

• What is the Ricci?
• What is the field strength for k = 2?
• Can it be regularised?
• Can we achieve the maximal isometry - SO(3)× O(2) - for

the Kaluza-Klein metric?
• Is the Ricci tensor non-negative?

=⇒ The static 8-dimensional spacetime satisfies strong
energy condition.

• Does it satisfy the other common energy conditions?
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Geometry - Conclusions and Outlook

• Kaluza-Klein metrics on exotic spheres have a natural and
elegant description in terms of quaternions.

• We found an easy analytic expression for a metric which has:
no singularities, maximal isometry and positive Ricci tensor.

• This is a key step for the study of these manifolds in
supergravity. All sorts of questions remain open in that
context.

• Some questions on the properties of these metrics are still to
be answered (sectional curvature, bounds on the curvature,
etc.).
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New ML Method - Motivation

• Many families of Einstein metrics have been shown to exist on
the exotic 7-sphere.

• The proof is non-constructive.
• It is likely that they have very little (if any) isometry.

Hence, numerical methods are appropriate for this scenario.
There are many other settings where analytics has not been able to
provide answers, for instance:

• Explicit form of Calabi-Yau metric [6,7,8].
• Existence of Ricci flat metric on S2 × S2.
• Existence of Ricci flat metric on Sn for n > 3.

[6] M. R. Douglas, S. Lakshminarasimhan, and Y. Qi, Numerical
calabi-yau metrics from holomorphic networks, PMLR 145 (2022).
[7] M. Larfors, A. Lukas, F. Ruehle, and R. Schneider, Learning size and
shape of Calabi-Yau spaces, arXiv:2111.01436.
[8] M. Gerdes and S. Krippendorf, Cyjax: A package for calabi-yau
metrics with jax, MLST 4 (2023).
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New ML Method - Review of ML

With Alex Stapleton and Edward Hirst, we tried tackling this
problem using the neural network ansatz.

A supervised neural network works as follows:
• Input.
• Layers, composed of activation function (non-linear), weights

and biases.
• Output.
• Training loop: adjust the weights and biases to minimise

|predicted output − correct output|.
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New ML Method - Gross Structure

In our case we do not know the output.
So we employ semi-supervised approach. Instead of minimising
|predicted output − correct output|, we minimise
floss(predicted output).

Gross Structure
• Input: points on the manifold (subtle, see next slide).
• Layers - make sure that they are smooth.
• Output: metric g (subtle, see next slide).
• Loss function: floss(g) = |R(g)− λg|, where λ = 0, 1,−1

(subtle, see next slide).
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New ML Method - The Details

How do we sample points globally and feed them to the neural
network appropriately?

Components of the loss function:
• Einstein condition, which uses autodifferentiation to calculate

R(g1) and R(g2) and it is evaluated in the two patches
separately.

• Finiteness condition, to avoid convergence to “zero metric”.
• Overlap condition: |g1 − Jg2J T |, where J is the Jacobian of

the change of coordinates.
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New ML Method - An Animation of S2

Analytic:

Numeric, every few epochs:
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New ML Method - Comparison with Existing Methods

Traditional PDE methods are (and probably will remain) better for
most “standard” scenarios.
However, the ML method has an element which is absent from
most traditional algorithms: stochasticity.
Moreover, it can prove to be advantageous in the following
situations

• High dimensions.
• Moduli space of metrics.
• Non-trivial global structures (many patches).
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New ML Method - Future Directions

• Look at higher-dimensional spheres, and search for Ricci-flat
metrics.

• Add a gauge fixing term.
• Change the overlap function, and look at exotic spheres.
• Change the number of patches, then look at S2 × S2.
• Add parameters for moduli spaces, then look at T 2 to begin

with.
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“Exotic Shocks” - Motivation

The fact that exotic spheres are homeomorphic but not
diffeomorphic to ordinary 7−spheres is not manifest from the
geometry.
Does this “exotic-ness” (i.e. the homeomorphism but not
diffeomorphism property) have direct physical consequences?
Some work has been done in this direction (for references, see [4]):

• Exotic spheres appear in the context of gravitational
instantons (Witten, Baadhio and collaborators).

• Showed that exotic 7-manifolds contribute non-trivially to the
gravitational path integral (Schleich and Witt).

• Brans, Asselmeyer-Maluga and collaborators have worked
extensively on exploring the consequences of exotic
differentiable structures (including the ones on 7-spheres) in
GR.
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• Exotic spheres appear in the context of gravitational
instantons (Witten, Baadhio and collaborators).

• Showed that exotic 7-manifolds contribute non-trivially to the
gravitational path integral (Schleich and Witt).

• Brans, Asselmeyer-Maluga and collaborators have worked
extensively on exploring the consequences of exotic
differentiable structures (including the ones on 7-spheres) in
GR.
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“Exotic Shocks” - General Idea

Key takeaway from the last series of works: differentiable structure
is a global property, but the “difference” between two inequivalent
differentiable structures is localised.
Idea: to study this “difference”, by explicitly looking at the map
between the two exotic manifolds.
Similarly to the phenomenon of topology change, one can define
an appropriate notion for a change of differentiable structure and
study its implications.
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“Exotic Shocks” - The Map

The homeomorphic map S7 −→ Σ7 cannot be C∞, by definition.
So it is C k , but for which k?
By Whitney’s theorem, the map cannot be C k with k > 0.
I.e. the Jacobian is discontinuous.
There exist concrete ways of constructing the map S7 −→ Σ7

explicitly (unlike exotic R4’s...).
• Via diffeomorphism S6 −→ S6 (twisted spheres).
• By taking the divergence of the Morse function.
• By using the intuition about 1-dimensional foliation of spheres

([9]).

[9] I. Tamura, Homeomorphy classification of total spaces of sphere
bundles over spheres, Jour. of Math. Soc. of Jap. 10 (1958).
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“Exotic Shocks” - The Map of [9]
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“Exotic Shocks” - The Shock Condition

The Jacobian J has a surface of (bounded) discontinuity. Let the
discontinuity be localised at the hypersurface defined by t = t 0.
Suppose we have a metric g on Σ7 and we want to pull it back to
g′ on S7.
The resulting metric given by g′ = JgJ T is discontinuous in
general, unless g is degenerate (c.f. topology change)....

Let t+0 = t 0 + ϵ, t−0 = t 0 − ϵ. We introduce the following notation
for coordinates: (x 0) = (x, y, z, · · · , t = t 0),
(x+

0 ) = (x, y, z, · · · , t = t+0 ), (x
−
0 ) = (x, y, z, · · · , t = t−0 ).

Let J (x+
0 ) = J+(x 0), J (x−

0 ) = J−(x 0). Clearly J+(x 0) 6= J−(x 0).
Finally, define Q(x 0) = J+(x 0)J−(x 0)

−1.
Then, if Q(x 0)g(x 0)G(x 0)

T = g(x 0), the pull-back g′ is
continuous.
And, unless g′ is Einstein, then g′ is a shock wave.
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“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?

I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.

But recall: Tamura’s map is not the only possibility:
• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.

• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.

• The condition is also dependent on the metric that is being
pulled-back.

What is the interpretation?
• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.

What is the interpretation?
• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.

• New (low regularity) metrics can be built on Σ7 by pulling
back those on S7.

What about other exotic spaces?

Tancredi Schettini Gherardini Queen Mary University of London
Exotic Spheres from Different Angles 38 / 41



Review Geometry of Exotic Spheres A New Numerical ML Method Exotic Spaces and Shock Waves Summary and Conclusions The End

“Exotic Shocks” - Comments and Future Directions

Can this condition be satisfied?
I am currently working on evaluating it for Tamura’s map.
But recall: Tamura’s map is not the only possibility:

• It can be deformed.
• There are other constructions of homeomorphisms.
• The condition is also dependent on the metric that is being

pulled-back.
What is the interpretation?

• Shock waves arise from inequivalent differentiable structures.
• New (low regularity) metrics can be built on Σ7 by pulling

back those on S7.
What about other exotic spaces?
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Wrapping Up

Exotic Spheres are a cornucopia of interesting open questions:
• Many open questions concern their geometry.

In this regard, I presented some progress in understanding a
set of geometries on exotic spheres analytically.
Hopefully, this can help gauging their role in supegravity
compactifications.

• Some questions, however, are difficult to tackle analytically.
In this direction, I introduced a numerical scheme which might
help finding approximate solutions numerically.

• The role of inequivalent differentiable structures in physics
remains somewhat mysterious.
Exotic spheres might help providing a physical implication of
the “change of differentiable structure”.
I presented a possible manifestation of such a phenomenon,
which consists of shock waves.
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Thank you!
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