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Usually integrability comes up in 1d or 2d
(spin chains, IQFT in 2d, lattice models, ...)

More recently – powerful examples in d>2,

such as N=4 super Yang-Mills in 4d

Goal: understand higher-dim integrability

Introduction

Solution of N=4 SYM draws much from

AdS/CFT duality with string theory
We will instead explore integrability

directly in field theory



We will show how integrability helps to compute individual Feynman graphs

Rich structures: geometry,

special functions/numbers,

differential equations, etc

𝑥1

𝑥2 𝑥3

𝑥𝑛

𝑥4

• We find a new large class of

integrable Feynman graphs

• They satisfy PDEs based on 

Yangian symmetry
often fix the

result completely!

Greatly extend known results

[Kazakov, Loebbert, Zhong 17-18]

[Loebbert, … ]

[Lukowski, Ferro, Frassek, Loebbert, 

Staudacher, …] [Arkani-Hamed, …]
famously used for

other observables in N=4 SYM



Feynman graphs from the "Loom"



Study conformal Feynman integrals in any D

arising from geometric “loom” construction

[Zamolodchikov 80]

[Kazakov, Olivucci 22]

Start from ‘Baxter lattice’

(finite set of lines)
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Study conformal Feynman integrals in any D

arising from geometric “loom” construction

[Zamolodchikov 80]

[Kazakov, Olivucci 22]

Start from ‘Baxter lattice’

(finite set of lines)

get Feynman graph

Put vertices inside white faces,

connect neighbours via propagators

Assign D-dim coordinates 𝑥𝑘

to each vertex, integrate over internal

𝑥3

𝑥2

𝑥1



propagator = 
1

|𝑥1−𝑥2|2∆

[Zamolodchikov 80]𝑥1

𝑥2

After integration we get a conformally invariant

function of external coordinates

At each vertex the sum of ∆’s is D !

So we have conformal symmetry

Can be viewed as position-space correlation function





Moving lines of the Baxter lattice gives

star-triangle transformation for the graph

These Feynman graphs should be

integrable in any D



Example: general cross integral

Notice in general Delta’s are not integer

One can still write down a Lagrangian that gives these graphs

𝑥1

𝑥2

𝑥3

𝑥4

𝑥0

[Kazakov Olivucci 22]

with



Example: square lattice in D=4

=1    (usual massless scalar field)

propagator = 
1

|𝑥1−𝑥2|2

Fishnet CFT, actually an extreme deformation of N=4 SYM

(inherits integrability from it)

[Gurdogan, Kazakov 15]



Constraints

+ topological constraints:

not every graph can be drawn on a loom at all

Two types of constraints on ∆ ’s

• Local: sum=D at each vertex        conformality

• Non-local: dual conformal

sum around an n-gon = (n-2)D/2

too many legs



Yangian symmetry

and integrability 



Any loom graph 𝐼 𝑥1, … , 𝑥𝑛  is conformally invariant

But there is also a powerful hidden symmetry

Summing over all legs we get a symmetry:

Conformal symmetry



𝑗=1

𝑛

𝑃𝑗
𝜇

𝐼 𝑥1, … , 𝑥𝑛 = 0 etc

Each leg carries a principal series rep of so(D,2) labelled by Δ𝑗



Yangian symmetry

level-0 (conformal)

level-1  (dual conformal)

+ inf many more
Yangian symm was used to great 

effect in N=4 SYM

But may have problems with regularisation

We avoid them by working with correlators not amplitudes

[Lukowski, Ferro, Frassek, Loebbert, 

Staudacher, …]

[Arkani-Hamed, …]



We find that any “loom” graph is an eigenstate of an integrable SO(D,2) spin chain

[Chicherin, Derkachov, Isaev 12]

Laxes act on external legs

Generalize results known for

mostly square lattice

[Kazakov, FLM, Mishnyakov 23]

[Chicherin, Kazakov, Loebbert,

Muller, Zhong 17] [..]

𝑥1

𝑥2
𝑥3

𝑥𝑛



L acts in 𝑉𝑝ℎ𝑦𝑠 ⨂ 𝑉𝑎𝑢𝑥

principal

series rep

labelled by Delta

4d spinor rep

encode rep label

and spectral parameter  



Prove using the “Lasso”

based on intertwining relation

& full derivative tricks

choose shifts of u according

to graph geometry

In the end all constraints on Delta’s

are used nontrivially

[Chicherin, Kazakov, Loebbert,

Muller, Zhong 17]

[Kazakov, FLM, Mishnyakov 23]



Geometry can be quite involved

[Kazakov, FLM, Mishnyakov 23]

We found a prescription for labels

for (almost) arbitrary graphs



𝑥1

𝑥2

𝑥3

𝑥4

𝑥0

Example: cross integral

The shifts are:



Expanding in powers of u we get Yangian algebra

Yangian symmetry

level-0

conformal symmetry

level-1

Yangian symmetry

Enough to impose

graph-dependent

evaluation parameters
bilocal part

= 0

New PDEs!

𝑇(𝑢)



The graph actually depends on cross-ratios

Equations in cross-ratios

Highly nontrivial coupled 2nd order diff eqs!

E.g. for cross: 

Hypergeometric system! Solved by Appell F4

[Loebbert, Muller, Munkler 19]



Example: square with 6 legs

graph-dependent

evaluation parameters
bilocal part

We find

[Kazakov, FLM, Mishnyakov 23]



Need to classify & 

explore them

Should have finite-dim solution space!

So fix the graph up to boundary conditions

Diff equations provide concise structure 

… especially for 2d square lattice – linked to Calabi-Yau geometry

(Yangian eqs = Picard-Fuchs eqs for periods) [Duhr, Klemm, Loebbert,

Nega, Porkert 22, 23]



Equations in cross ratios

[FLM, Mishnyakov 24]



How to write Yangian in cross ratios?

we assume high enough D

but should be possible to relax [in progress]

Was known only for a few special cases

We found the general answer! [FLM, Mishnyakov 24]



Relation to GKZ systems



[see also Pal 2023

for N-cross graphs]

The most involved part of our eqs are

the famous Gelfand-Kapranov-Zelevinsky operators

sum of GKZ ops

1st order part (remainder)

[Gelfand Kapranov Zelevinsky 89, 92,93]

trivial conjugation by 

propagators

[FLM, Mishnyakov 24]



Powerful solution theory

exists for GKZ eqs
Gives A-hypergeometric functions  

=   basis of functions for Feynman graph



• New examples:

• N-cross graphs



If remainder vanishes we can

use powerful GKZ solution methods

• New examples:

• N-cross graphs

sum of GKZ ops

1st order part (remainder)



Note GKZ eqs are much studied

for Feynman graphs

But typically in Lee-Pomeransky rep

Here we see them directly in coord space

Much to be explored

[Grimm Hoefnagel 24]

[de la Cruz 19]

…



Other realisations 

of integrability



In 4d fishnets one can compute some graphs

using separation of variables for conformal spin chain,

should explore links [Cavaglia, Gromov, FLM 21]



So far we took spinor rep in auxiliary space

[Kazakov, FLM, Mishnyakov 23]Another natural choice – principal series like in phys space

Then instead of Lax use R-matrix – an integral operator

new integral equations for the diagrams
[Chicherin, Derkachov, Isaev 12]

Implications

to be explored



OUTLOOK

Long road to integrable Feynman graphs:

AdS/CFT and N=4 SYM         fishnet limit           Yangian symmetry

• Need full understanding and general form of PDEs, solution theory

    Link with powerful math methods (GKZ, D-module theory)

• Beyond scalar graphs – fermions, gauge fields, massive

• Calabi-Yau geometry appears in several different ways; beyond 2d?

• Connection with separation of variables (SoV)

[Ferrando, Sever] [Loebbert et al]
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