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Outline of the talk

• Introduction to the BV formalism in classical field theory:
Motivation and a paradigmatic example.

• The BV formulation of Palatini–Cartan gravity.

• The BV formulation of N = 1,D = 4 Supergravity

• Extra: How to obtain the infinitesimal symmetry transformations
from the boundary structure of a field theory.
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The BV formalism in field theory

Definition
Let M be a smooth manifold. A field theory on M is given by a space
of fields FM and an action functional SM ∈ C∞(FM) on it.

• we are interested in the symmetries of the systems, i.e. vector fields
X ∈ X(FM) such that

LX (SM) = 0.

• in a gauge theory, symmetries are generated by elements of Lie(G ),
G Lie group

• Here we consider an involutive distribution D ⊂ X(FM) s.t.
LX (SM) = 0 for all X ∈ D.
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Definition
A BV manifold on M is the assignment of data (FM ,SM ,Q, ϖM), where
(FM , ϖM) is a Z-graded supermanifold endowed with a -1-symplectic
form ϖM , and SM and Q are respectively a degree 0 funcional (called
BV action) and a degree 1 vector field on FM such that

• ιQϖM = δSM , i.e. Q is the Hamiltonian vector field of SM ;

• Q2 = 1
2 [Q,Q] = 0, i.e. Q is cohomological.

Remark
As a consequence of Q being cohomological, the BV action satisfies the
classical master equation

(S ,S) = 0.
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Why is it useful?

• BV formalism used to obtain cohomological description of spaces of
observables

• generalizes BRST when symmetries close only "on-shell"

• compatible with cutting and gluing, TQFT-like theories and
axiomatic definitions of QFT’s

• provides consistent formalism for quantization of gauge theories
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A paradigmatic example: gauge field theory

• Let G be a gauge group on M, with Lie algebra g, and FM be the
space of fields (section of associated vector bundle, space of
connections, etc.). There exists an action of the Lie algebra

ρ : Γ(M, g) −→ X(FM)

forming an involutive distribution D := ρ(Γ(M, g)) ⊂ X(FM)

• Consider the bundle
D[1] → FM ,

definining the multiplet Φα(x) = (φi (x), ca(x)) ∈ D[1], with fields
ϕi (x) ∈ FM and ghosts ca(x) ∈ Γ(M, g[1])
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A paradigmatic example: gauge field theory

• The space of BV fields is given by

FM := T ∗[−1]D[1]

with fiber given by the multiplet of anti–fields
Φ†
α(x) = (φ†

i (x), c
†
α(x)) containing the field momenta

φ†
i (x) ∈ T ∗[−1]FM and the ghost momenta c†a ∈ Γ(M, g∗[−2])

• there exists a canonical -1 symplectic form

ϖM =

∫
M

δΦ†
α ∧ δΦα

• Assume Q0 ∈ D[1] is the vector field encoding the gauge symmetry,
i.e. Q0(SM) = 0
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A paradigmatic example: gauge field theory

• In the simplest cases, the BV action is given by

SM = SM +

∫
M

Φ†
α ∧Q0(ϕ

α)

obtaining

Q(Φα) = Q0(Φ
α) and Q(Φ†

α) =
δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
,

• Letting C k be the functions of ghost degree k on FM , one can
intuitively see

H0(Q) =
kerQ : C 0 → C 1

ImQ : C−1 → C 0 ≃ C∞
{
Φα

∣∣∣∣ δLMδΦα
= 0

}
/G,

7



A paradigmatic example: gauge field theory

• In the simplest cases, the BV action is given by

SM = SM +

∫
M

Φ†
α ∧Q0(ϕ

α)

obtaining

Q(Φα) = Q0(Φ
α) and Q(Φ†

α) =
δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
,

• Letting C k be the functions of ghost degree k on FM , one can
intuitively see

H0(Q) =
kerQ : C 0 → C 1

ImQ : C−1 → C 0 ≃ C∞
{
Φα

∣∣∣∣ δLMδΦα
= 0

}
/G,

7



A paradigmatic example: gauge field theory

• In the simplest cases, the BV action is given by

SM = SM +

∫
M

Φ†
α ∧Q0(ϕ

α)

obtaining

Q(Φα) = Q0(Φ
α) and Q(Φ†

α) =
δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
,

• Letting C k be the functions of ghost degree k on FM , one can
intuitively see

H0(Q) =
kerQ : C 0 → C 1

ImQ : C−1 → C 0 ≃ C∞
{
Φα

∣∣∣∣ δLMδΦα
= 0

}
/G,

7



A paradigmatic example: gauge field theory

• It is often the case that the symmetries close only on shell, i.e.

Q2
0Φ

α =
δLM
δΦβ

Mαβ(Φ)

• the BV action then needs to be modified by adding a quadratic term
in the anti–fields

SM = SM +

∫
M

Φ†
αQ0(ϕ

α) +
1
2
Φ†
αΦ

†
βM

αβ(Φ),

• obtaining

Q(Φα) = Q0(Φ
α) + Φ†

βM
αβ ,

Q(Φ†
α) =

δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
+

(−1)β+γ

2
Φ†
βΦ

†
γ

δMβγ

δΦα
.

8



A paradigmatic example: gauge field theory

• It is often the case that the symmetries close only on shell, i.e.

Q2
0Φ

α =
δLM
δΦβ

Mαβ(Φ)

• the BV action then needs to be modified by adding a quadratic term
in the anti–fields

SM = SM +

∫
M

Φ†
αQ0(ϕ

α) +
1
2
Φ†
αΦ

†
βM

αβ(Φ),

• obtaining

Q(Φα) = Q0(Φ
α) + Φ†

βM
αβ ,

Q(Φ†
α) =

δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
+

(−1)β+γ

2
Φ†
βΦ

†
γ

δMβγ

δΦα
.

8



A paradigmatic example: gauge field theory

• It is often the case that the symmetries close only on shell, i.e.

Q2
0Φ

α =
δLM
δΦβ

Mαβ(Φ)

• the BV action then needs to be modified by adding a quadratic term
in the anti–fields

SM = SM +

∫
M

Φ†
αQ0(ϕ

α) +
1
2
Φ†
αΦ

†
βM

αβ(Φ),

• obtaining

Q(Φα) = Q0(Φ
α) + Φ†

βM
αβ ,

Q(Φ†
α) =

δLM
δΦα

− (−1)βΦ†
β

δ(Q0ϕ
β)

δΦα
+

(−1)β+γ

2
Φ†
βΦ

†
γ

δMβγ

δΦα
.

8



The BV formulation of Palatini–Cartan gravity

• Let PSO → M be a principal SO(3, 1)–bundle and V be a
4–dimensional vector space equipped with the Minkowski metric

• The Minkowski bundle is the associated vector bundle

V := PSO ×λ V ,

where λ is the vector (spin 1) representation of SO(3, 1)

Definition
The Palatini–Cartan theory of gravity is given by the following data

FPC := Ω1
n.d.(M,V)×AM ∋ (e, ω) and SPC =

∫
M

e2

2
Fω,

where

• e is the vielbein, seen as a linear isomorphism TM → V;

• ω is a local connection, locally modeled by elements in Ω1(M,∧2V),
after noticing so(3, 1) ≃ ∧2V .
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The BV formulation of Palatini–Cartan gravity: Symmetries

• Let c ∈ Γ[1](∧2V) be the gauge parameter related to internal
Lorentz symmetry, the infinitesimal transformation is

δce = [c , e] and δcω = dωc .

• Let ξ ∈ X[1](M) be the gauge parameter of diffeomorphisms, then

δξe = Lωξ e := ιξdωe − dωιξe and δξω = ιξFω

• We obtain the distribution D[1] ⊂ X[1](FPC ) given by elements
X ∈ D[1] of the kind

X(e, ω) =
∫
M

(Lωξ e − [c , e])
δ

δe
+ (ιξFω − dωc)

δ

δω
∈ X[1](FPC ),

being parametrized by the space Γ[1](∧2V)× X[1](M) ∋ (c , ξ).
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The BV formulation of Palatini–Cartan gravity

• The BV space of fields is given by

FPC := T ∗[−1]
(
FPC × Γ[1](∧2V)× X[1](M)

)
,

• With the canonical -1 symplectic form

ϖPC =

∫
M

δeδe† + δωδω† + δcδc† + ιδξδξ
†

• The symmetries are encoded in the vector field QPC , with

QPCe = Lωξ e − [c , e] QPCω = ιξFω − dωc

QPCc =
1
2
(ιξιξFω − [c .c]) QPC ξ =

1
2
[ξ, ξ].
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The BV formulation of Palatini–Cartan gravity

With all the above information, we have

Theorem
The collection (FPC , ϖPC ,QPC ,SPC ) defines a BV structure, where

SPC =

∫
M

e2

2
Fω − (Lωξ e − [c , e])e† + (ιξFω − dωc)ω

†

+
1
2
(ιξιξFω − [c , c])c† +

1
2
ι[ξ,ξ]ξ

†.

Remark
Notice that in the presence of a boundary, the vector field QPC is not
the Hamiltonian vector field of SPC , but instead

δSPC = ιQPC
ϖPC + ϑ∂PC ,

where ϑPC is a boundary term.

12



The N = 1,D = 4 Supergravity in the first order formalism

• Let P → M be a principal Spin(3, 1)–bundle and V be a
4–dimensional vector space equipped with the Minkowski metric

• The Minkowski bundle is the associated vector bundle

V := P ×λ V ,

where λ is the vector (spin 1) representation of Spin(3, 1)

• The Dirac spinor bundle is the associated bundle

SD := P ×Γ C4,

where Γ is the gamma representation of the Clifford algebra C(V )

restricted to the spin subgroup Spin(V ) ≃Spin(3, 1).
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The N = 1,D = 4 Supergravity in the first order formalism

Definition
The first–order formulation of N = 1,D = 4 Supergravity is given by
the following data

FSG := Ω1
n.d.(M,V)×AM × Ω1(M,ΠSM) ∋ (e, ω, ψ),

SPC =

∫
M

e2

2
Fω +

1
3!
ψ̄γ3dωψ,

where

• e is the vielbein, seen as a linear isomorphism TM → V;

• ω is a local connection, locally modeled by elements in Ω1(M,∧2V);
• ψ is the gravitino, seen as 1–form with values in the Majorana spinor

bundle
SM := {χ ∈ SD | χ̄ := χ†γ0 = χtC}
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The N = 1,D = 4 Supergravity in the first order formalism

The equations of motion are

• The Einstein equation

eFω +
1
3!
ψ̄γ3dωψ = 0,

• The torsion equation

dωe −
1
2
ψ̄γψ = 0,

• The Rarita-Schwinger equation

edωψ̄γ
3 +

1
2
dωeψ̄γ

3 = 0.
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The N = 1,D = 4 (Super)symmetry transformations

• Let χ ∈ Γ[1](ΠSM) be the spinorial gauge parameter. Postulate the
following supersymmetric transformations for e and ψ

δχe = −χ̄γψ, δχψ = dωχ,

• Imposing the invariance of SSG , one obtains

δχSSG =

∫
M

(
dωe −

1
2
ψ̄γψ

)(
eδχω − 1

3!
χ̄γ3dωψ

)
,

hence eδχω =
1
3!
χ̄γ3dωψ.

• The other gauge parameters are c ∈ Γ[1](∧2V) and ξ ∈ X[1](M),
respectively generating the internal Lorentz symmetry and the
diffeomorphism symmetry as

δξe = Lωξ e δξω = ιξFω δξψ = Lωξ ψ

δce = [c , e] δcω = dωc δcψ = [c , ψ].
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Squaring the supersymmetry

An interesting exercise is to compute the expression of δ2χ.

We obtain

δ2χe = −1
2
Lωφe +

1
2
ιφ

(
dωe −

1
2
ψ̄γψ

)
δ2χψ = −1

2
Lωφψ +

1
2
ιφdωψ −

(
χ̄κ(< ē, γdωψ >) +

1
8
χ̄ιγ̂ιγ̂(γdωψ)

)
χ

eδ2χω = −1
2
eιφFω +

1
2
ιφ

(
eFω +

1
3!
ψ̄γ3dωψ

)
− 1

2 · 3!
ψ̄ιφ(γ

3dωψ)

− 1
3!
ψ̄γ3χ

(
χ̄κ(< ē, γdωψ >) +

1
8
χ̄ιγ̂ιγ̂(γdωψ)

)
,

where φ = χ̄γ̂χ, γ̂ := γµ∂µ and γ = γµdx
µ.

Remark

Notice that δ2χΦ = − 1
2δφΦ+ f (Eoms).
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The first attempt to a BV action

• The main construction tells us space of BV fields is

FSG = T ∗[−1]
(
FSG × Γ[1](∧2V)× X[1](M)× Γ[1](M,ΠSM)

)
,

• The -1–symplectic forms reads

ϖSG =

∫
M

δeδe† + δωδω† + iδψ̄δψ† + δcδc† + ιδξδξ
† + iδχ̄δχ†.

• The vector field Q0 encoding the symmetries is given by the sum of
the infinitesimal gauge transformations, i.e.

Q0e = Lωξ e − [c , e] + χ̄γψ Q0ω = ιξFω − dωc + δχω

Q0ψ = Lωξ ψ − [c , ψ]− dωχ Q0ξ =
1
2
[ξ, ξ] +

1
2
φ

Q0c =
1
2
(ιξιξFω − [c .c]) + ιξδχω Q0χ = Lωξ χ− [c , χ]− 1

2
ιφψ,

18
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The first attempt to a BV action

• However, the Classical Master Equation fails, indeed

Q2
0e =

1
2
ιφ

(
dωe −

1
2
ψ̄γψ

)
Q2

0ψ =
1
2
ιφdωψ −

(
χ̄κ(< ē, γdωψ >) +

1
8
χ̄ιγ̂ιγ̂(γdωψ)

)
χ

eQ2
0ω =

1
2
ιφ

(
eFω +

1
3!
ψ̄γ3dωψ

)
+

1
2 · 3!

ψ̄γ3ιφdωψ

− 1
3!
ψ̄γ3χ

(
χ̄κ(< ē, γdωψ >) +

1
8
χ̄ιγ̂ιγ̂(γdωψ)

)
Q2

0c =
1
2
ιφδχω + ιξQ2

0ω Q2
0χ = 0 Q2

0ξ = 0.

• The BV action needs to be complemented with a rank–2
contribution
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The Full BV action of N = 1,D = 4 SuGra

• To make the computations easier, we can uniquely define
č ∈ Ω(2,0)[−1], ω̌ ∈ Ω(2,1)[−1] and ψ0

† ∈ Ω1[−1](M,ΠSM) such that

c† =
e2

2
č , ω† = eω̌ and ψ† :=

1
3!
eγ3γψ0

†

• Furthermore, we define k† := ω† − ιξc
† and ǩ ∈ Ω(2,1)[−1] such

that k† = eǩ

Then we have

Theorem
The collection (FSG , ϖPC ,QSG ,SSG ) defines a BV structure, where

SSG = S0
SG +

∫
M

Φ†
αQSG (Φ

α) + s2
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Then we have

Theorem
The collection (FSG , ϖPC ,QSG ,SSG ) defines a BV structure, where

SSG = S0
SG +

∫
M

Φ†
αQSG (Φ

α) + s2

20



The Full BV action of N = 1,D = 4 SuGra

• To make the computations easier, we can uniquely define
č ∈ Ω(2,0)[−1], ω̌ ∈ Ω(2,1)[−1] and ψ0

† ∈ Ω1[−1](M,ΠSM) such that

c† =
e2

2
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The Full BV action of N = 1,D = 4 SuGra

where

s2 :=

∫
M

1
2
ǩιφe

† +
1
4

(
1
2
ψ̄0
†γ + α(ǩψ̄)γ − i

2
čχ̄

)
ιφψ†

+
i

4 · 3!

(
α(ǩψ̄)γ − i

2
čχ̄

)
γ3ιφ(ω̌ψ)

− i

2 · 3!

(
1
2
ψ̄0
†γ +

1
2
α(ǩψ̄)γ

)
γ3χ < e, χ̄[ω̌, γ]ψ >

+
1

2 · 3!

(
1
4
ψ̄0
†γ +

1
2
α(ǩψ̄)γ

)
γ3χ < e, χ̄γ2ψ0

† >

− 1
32

(
iψ̄†χ+

1
3!
ǩψ̄γ3χ

)
χ̄ιγ̂ιγ̂([ω̌, γ]ψ)

− i

32

(
iψ̄†χ+

1
3!
ǩψ̄γ3χ

)
χ̄ιγ̂ιγ̂(γ

2ψ0
†).

21



Extra: How to compute infinitesimal gauge transformations

• Assume Σ = ∂M. There is a boundary term in the variation of the
action

δSSG =

∫
M

ELM −
∫
Σ

e2

2
δω +

1
3!
eψ̄γ3δψ,

defined on the space of (pre–)boundary fields
F̃ ∂SG = Ω1

n.d.(Σ,V)×A(Σ)× Ω1(Σ,ΠSM)

• the variation of the boundary term yields a closed 2–form

ϖ̃Σ =

∫
Σ

eδeδω +
1
3!
ψ̄γ3δψδe +

1
3!
eδψ̄γ3δψ

which is degenerate

• For any X =
∫
Σ
Xe

δ
δe + Xω δ

δω + Xψ δ
δψ

Ker(ϖ̃Σ) =

{∫
Σ

Xω
δ

δω
∈ X(F̃Σ) | eXω = 0, Xω ∈ Ω1(Σ,∧2V)

}
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Extra: How to compute infinitesimal gauge transformations

• The space of boundary fields is the symplectic manifold (F ∂SG , ϖΣ),
where

F ∂SG = Ω1
n.d.(Σ,V)×Ared(Σ)× Ω1(Σ,ΠSM),

Ared(Σ) = {[ω] | ω′ ∼ ω iff ω′ = ω + v , ev = 0}

• Interested in space of Cauchy data CΣ

CΣ := {Φ ∈ F ∂SG | s.t. (EL)|Σ(Φ) = 0}.

• The restriction of the EL equations to the boundary give rise to
constraints,

eFω +
1
3!
ψ̄γ3dωψ = 0, dωe −

1
2
ψ̄γψ = 0,

e

3!
γ3dωψ − 1

2
dωeγ

3ψ = 0
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Extra: How to compute infinitesimal gauge transformations

Theorem
The constraints are invariant under the v–translation except the torsion
equation, which splits into the invariant constraint

e

(
dωe −

1
2
ψ̄γψ

)
= 0,

and the structural constraint

ϵn

(
dωe −

1
2
ψ̄γψ

)
= eσ

where {ei , ϵn} is a basis of V.

Furthermore, for all ω′ ∈ A(Σ) there exists a unique decomposition
ω′ = ω + v , where ω satisfies the structural constraint and ev = 0,
fixing uniquely a representative ω ∈ [ω′].
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Extra: How to compute infinitesimal gauge transformations

• The constraint are casted into functionals over F ∂SG by using
Lagrange multipliers

Jµ =

∫
Σ

µ

(
eFω +

1
3!
ψ̄γ3dωψ

)
Lc =

∫
Σ

c

(
edωe −

1
2
eψ̄γψ

)
Mχ =

∫
Σ

1
3
χ̄

(
eγ3dωψ − 1

2
dωeγ

3ψ

)
,

µ ∈ Γ[1](Σ,V), c ∈ Γ[1](Σ,∧2V), χ ∈ Γ[1](Σ,ΠSM)

• can use the basis {ei , ϵn} of V to split µ = ιξe + λϵn. obtaining

Pξ =

∫
Σ

1
2
ιξ(e

2)Fω +
1
3!
ιξeψ̄γ

3dωψ,

Hλ =

∫
Σ

λϵn

(
eFω +

1
3!
ψ̄γ3dωψ

)
.
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Extra: How to compute infinitesimal gauge transformations

• can preserve the boundary set by introducing transformation
Pξ 7→ Pξ − Lιξ(ω−ω0) −Mιξψ, then

Pξ =

∫
Σ

1
2
ιξe

2Fω + ιξ(ω − ω0)edωe −
1
3!
eψ̄γ3Lω0

ξ ψ.

Proposition
The Hamiltonian vector fields of the constraints are the infinitesimal
gauge transformations, i.e. vector fields XI = {Pξ,Lc ,Hλ,Mχ} such
that ιXI

ϖΣ = δfI , where fI = {Pξ, Lc ,Hλ,Mχ}. Explicitly
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26



Extra: How to compute infinitesimal gauge transformations

• can preserve the boundary set by introducing transformation
Pξ 7→ Pξ − Lιξ(ω−ω0) −Mιξψ, then

Pξ =

∫
Σ

1
2
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