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Introduction to the BV formalism in classical field theory:
Motivation and a paradigmatic example.

The BV formulation of Palatini—Cartan gravity.

e The BV formulation of N = 1, D = 4 Supergravity

Extra: How to obtain the infinitesimal symmetry transformations

from the boundary structure of a field theory.
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The BV formalism in field theory

Let M be a smooth manifold. A field theory on M is given by a space
of fields Fpy and an action functional Sy € C*°(Fpu) on it.

e we are interested in the symmetries of the systems, i.e. vector fields
X € X(Fum) such that
Lx(Sm) = 0.

e in a gauge theory, symmetries are generated by elements of Lie(G),
G Lie group

e Here we consider an involutive distribution ® C X(Fp) s.t.
Lx(SM) =0forall X €®.



Definition

A BV manifold on M is the assignment of data (Fu, Sm, Q, @wm), where
(Fm,wm) is a Z-graded supermanifold endowed with a -1-symplectic
form @y, and Sy and Q are respectively a degree 0 funcional (called
BV action) and a degree 1 vector field on Fy such that

o 1oy = 0Su, i.e. Q is the Hamiltonian vector field of Sy;

e @ =1[Q,Q]=0,ie Q iscohomological.



Definition

A BV manifold on M is the assignment of data (Fu, Sm, Q, @wm), where
(Fm,wm) is a Z-graded supermanifold endowed with a -1-symplectic
form @y, and Sy and Q are respectively a degree 0 funcional (called
BV action) and a degree 1 vector field on Fy such that

o 1oy = 0Su, i.e. Q is the Hamiltonian vector field of Sy;
e @ =1[Q,Q]=0,ie Q iscohomological.

Remark
As a consequence of @ being cohomological, the BV action satisfies the
classical master equation

(5,5)=0.
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Why is it useful?

e BV formalism used to obtain cohomological description of spaces of

observables
e generalizes BRST when symmetries close only "on-shell"

e compatible with cutting and gluing, TQFT-like theories and
axiomatic definitions of QFT's

e provides consistent formalism for quantization of gauge theories
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e Let G be a gauge group on M, with Lie algebra g, and Fy; be the
space of fields (section of associated vector bundle, space of
connections, etc.). There exists an action of the Lie algebra

p: r(Mag) —>x(FM)

forming an involutive distribution © := p(I[(M, g)) C X(Fum)
e Consider the bundle
@[1] — FM,

definining the multiplet ®%(x) = (¢'(x), ¢?(x)) € D[1], with fields
#'(x) € Fum and ghosts c?(x) € I'(M, g[1])
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A paradigmatic example: gauge field theory

e The space of BV fields is given by
Fum = T [-1]9[1]

with fiber given by the multiplet of anti—fields
®f (x) = (¢! (x), ¢l (x)) containing the field momenta
@l (x) € T*[~1]Fum and the ghost momenta ci € (M, g*[2])

e there exists a canonical -1 symplectic form

wy = / SO A 5
M

e Assume Qp € D[1] is the vector field encoding the gauge symmetry,
i.e. @0(5/\/}) =0
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A paradigmatic example: gauge field theory

e In the simplest cases, the BV action is given by
S = Sy +/ ®f A Qo(9%)
M

obtaining

Q(P%) = Qo(®*) and Q(d!) = —=

e Letting C* be the functions of ghost degree k on Fj;, one can
intuitively see

. O 1
:kerQ.C —C e e
ImQ:C-1— (O

oLy

H(Q) S o}/g,
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A paradigmatic example: gauge field theory

e It is often the case that the symmetries close only on shell, i.e.

« 5L (03
Q3o = 555 M (o)

e the BV action then needs to be modified by adding a quadratic term
in the anti—fields

1
Sm = Sm -l-/ o] Qo(¢) + E‘DL(DLM“/%(CD),
M

e obtaining

Q™) = Qo(®) + ®fM7,

Bt 5(Q0¢ﬁ) N (_1)ﬁ+v i T(;Mﬁv
B s 2 BT Spa

Qo) = 24— (-1)
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The BV formulation of Palatini—Cartan gravity

e Let Pso — M be a principal SO(3,1)-bundle and V be a
4—dimensional vector space equipped with the Minkowski metric
e The Minkowski bundle is the associated vector bundle

V= PSO X\ \/7
where X is the vector (spin 1) representation of SO(3,1)

The Palatini—Cartan theory of gravity is given by the following data
Frc = QL . (M,V) x Ay 3 (e,w) and Spc :/ SFu
M

where

e e is the vielbein, seen as a linear isomorphism TM — V;

e wis a local connection, locally modeled by elements in Q'(M, A%V),
after noticing s0(3,1) ~ A2V.
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The BV formulation of Palatini—Cartan gravity: Symmetries

e Let c € M1](A2V) be the gauge parameter related to internal
Lorentz symmetry, the infinitesimal transformation is

dce =[c, €] and Ocw = d,,C.

o Let £ € X[1](M) be the gauge parameter of diffeomorphisms, then

dce = L?e = tedye — dytee and dew = teFy

e We obtain the distribution ©[1] C X[1](Fpc) given by elements
X € D[1] of the kind

X(e,w) = /M( e —|c, e])% + (eeFo — dwc)% € X[1](Fpc),

being parametrized by the space 1](A%V) x X[1](M) > (c, €).

10
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e With the canonical -1 symplectic form
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M
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The BV formulation of Palatini—Cartan gravity

e The BV space of fields is given by

Fec = T*[~1](Fpc x T[1](A?V) x X[1}(M)),

e With the canonical -1 symplectic form

wpe = / sedel + dwow' + dcdct + 15e0¢T
M

e The symmetries are encoded in the vector field Qpc, with
Qpce: L‘é’ef [C, e] Qp(_‘w:Lng 7dwC

Qpcc = %(Lgl/gf:w = [C.C]) Qpcé = %[€7£]

11



The BV formulation of Palatini—Cartan gravity

With all the above information, we have

The collection (Fpc, wpe, Qpc, Spc) defines a BV structure, where

2
Spc = %Fw — (Lge — e, e])el + (eeFo — d,,c)w’
M
1 i, 1 i
+ 5 (teteFo — e, cl)e! + S ue g€’

Remark
Notice that in the presence of a boundary, the vector field Qp¢ is not
the Hamiltonian vector field of Spc, but instead

38pc = tgpcwpc + Ve,

where Ypc is a boundary term.
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The N =1, D = 4 Supergravity in the first order formalism

The first—order formulation of N = 1, D = 4 Supergravity is given by
the following data

Fse := QL 4. (M, V) x Ay x QY(M,NSy) > (e, w, ),
S —/ “F G+ Lopd
K= R O g e

where

e ¢ is the vielbein, seen as a linear isomorphism TM — V;
e w is a local connection, locally modeled by elements in Ql(M,/\ZV);

e 1 is the gravitino, seen as 1-form with values in the Majorana spinor

bundle

+

Sm={x€Sp|x:=x"1=x"C}

14
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The N =1, D = 4 Supergravity in the first order formalism

The equations of motion are

e The Einstein equation

1 -
eF, + awﬁdm =0,

e The torsion equation

dwe - %J]’Ydj = 07

e The Rarita-Schwinger equation
-3 1 7.3
ed, vy’ + Edwez/ry =0.

15
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e Let y € I'[1](MSy) be the spinorial gauge parameter. Postulate the
following supersymmetric transformations for e and %

5)(6 = =X, 5)(/‘/} = d,X,

e Imposing the invariance of Ssg, one obtains
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The N =1,D =4 (Super)symmetry transformations

e Let y € I'[1](MSy) be the spinorial gauge parameter. Postulate the
following supersymmetric transformations for e and %

5)(6 = =X, 5)(/‘/} = d,X,

e Imposing the invariance of Ssg, one obtains

1 = 1
0xSsc = / (dwe = 2¢V¢) (eéxw = 3,>_<’Y3dw1/)) ;
M H

1_ 3
hence edw = ax’y du1.

e The other gauge parameters are c € I'[1](A2V) and & € X[1](M),
respectively generating the internal Lorentz symmetry and the
diffeomorphism symmetry as

dee=L¢e dew=1eF, e =LgY

(Sce = [C7 e] 6cw = dwc 561/] = [C7'¢].
16



Squaring the supersymmetry

An interesting exercise is to compute the expression of 5>2<.
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Squaring the supersymmetry

An interesting exercise is to compute the expression of 5>2<. We obtain

1 1 1-
5)2<e = —EL:’;e + Sl (dwe = 21&71#)

1 1 _ _ 1_
B = ~3L50 + St = (Xu(< 8200 >) + gRuaia(1d¥) ) x

1

- 2. 3| @thp(’ﬁd&ﬂ/})

1 1 1-
egiw = —EeLwa + Ste <er + 3!11[J,y3dww>

1l = _ _ 1_
_ 51/173X (XH(< e,ld,ﬂp >) + 8XLA/LA/(WC/W1/))> )

where ¢ = Xyx, ¥ := 7*9, and v = v, dx*.

Remark
Notice that 62¢ = —36,® + f(Eom).

17



The first attempt to a BV action

e The main construction tells us space of BV fields is

Fse = T*[=1](Fse x MLI(A2V) x E[1](M) x F[1](M, NSy)).
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The first attempt to a BV action

e The main construction tells us space of BV fields is

Fse = T*[=1](Fse x MLI(A2V) x E[1](M) x F[1](M, NSy)).

e The -1-symplectic forms reads
S / Sedel + bwdit + 6P + bebet + 1€t + ibxEX.
M

e The vector field Qg encoding the symmetries is given by the sum of
the infinitesimal gauge transformations, i.e.

Qoe = Lge —[c, e] + X Qow = t¢Fy — dyc + yw
1 1
Qop = Lgw — [e,9] - dux Qot = 51681+ 3¢
1 1
Qoc = E(Lgbng —[c.c]) +edyw Qox = L¢x —[e,x] — Eww,

18



The first attempt to a BV action

e However, the Classical Master Equation fails, indeed
Qe = 31, (doe - 390
Q3% = 1ot — (Xu(< 870 >) + g3 26ut) ) X
eQiw = ;

- 1
- 507 (< 82t >) + gRis(adt))

<€F + w"}/3dww> + 273”/)’}/ 22 MZ)

1
QOC = Lw xw + Lg@ow Qéx =0 Qg{ =0.
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The first attempt to a BV action

e However, the Classical Master Equation fails, indeed
Qe = 31, (doe - 390
Q3% = 1ot — (Xu(< 870 >) + g3 26ut) ) X
eQiw = ;

- 1
- 507 (< 82t >) + gRis(adt))

<€F + w"}/3dww> + 273”/)’}/ 22 MZ)

1
QOC = Lw xw + Lg@ow Qéx =0 Qg{ =0.

e The BV action needs to be complemented with a rank-2
contribution

19



The Full BV action of N =1,D = 4 SuGra

e To make the computations easier, we can uniquely define
¢ € QBI[-1], © € Q®Y[-1] and ¥ € Q*[-1](M,NSy) such that

e2

1
T x | - 3../,0
cl = 2c, w'=ew and ;= 3!e7 YYi
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The Full BV action of N =1,D = 4 SuGra

e To make the computations easier, we can uniquely define
¢ € QBI[-1], © € Q®Y[-1] and ¥ € Q*[-1](M,NSy) such that

e2

1
T x | - 3../,0
cl = 2c, w'=ew and ;= 3!e7 YYi

e Furthermore, we define k' := w' — 1¢ct and k € Q®Y[-1] such
that kT = ek

20



The Full BV action of N =1,D =4 SuGra

e To make the computations easier, we can uniquely define
¢ € QBI[-1], © € Q®Y[-1] and ¥ € Q*[-1](M,NSy) such that

2

e 1
A = ?5’ wh=ey and Py = 567317#?

e Furthermore, we define k' := w' — 1¢ct and k € Q®Y[-1] such
that kT = ek

Then we have

The collection (Fsg,wpc, Qsg, Sse) defines a BV structure, where

Ss¢ = S +/ ! Qs6 (D) + 5
M



The Full BV action of N =1,D =4 SuGra

1- 1 .-
u ﬁ (ﬂ?fr Sa(kP)y | vPx < e, 75 >
= <"/_’T>< + gk ) ([0 719)
- 55 (Bt gk Raaua o).
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Extra: How to compute infinitesimal gauge transformations

e Assume ¥~ = OM. There is a boundary term in the variation of the

action

2
1 -
555@2/ ELM—/ i§w+7e¢7351/}7
M s 2 3!

defined on the space of (pre—)boundary fields
Fgc =Q! (Z,V) x A(T) x QYZ, NSw)

n.d.
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Extra: How to compute infinitesimal gauge transformations

e Assume ¥~ = OM. There is a boundary term in the variation of the
action

2
1 -
555@2/ ELM—/ i§w+7e¢7351/}7
M s 2 3!

defined on the space of (pre—)boundary fields
Fgc =Q! (Z,V) x A(T) x QYZ, NSw)

n.d.
e the variation of the boundary term yields a closed 2—form
. l = g -
@y = | ededw + ng ode + aeézm o
z . H

which is degenerate

o Forany X = [( X. 2 + X, & +Xd,%
Ker(&s) = {/Xw; € ¥(Fy)| eX, =0, X, € QI(Z,/\QV)}
bN w

22



Extra: How to compute infinitesimal gauge transformations

e The space of boundary fields is the symplectic manifold (FZ, ws),
where

Fs = 0.a (T, V) X Area(T) x (T, NSw),
Ared(Z) = {[w] | ~wiffw’ =w+ v, ev =0}
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where
Fs = 0.a (T, V) X Area(T) x (T, NSw),
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e Interested in space of Cauchy data Cs

Cs = {® € F& | s.t. (EL)|s(®) = 0}.
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Extra: How to compute infinitesimal gauge transformations

e The space of boundary fields is the symplectic manifold (FZ, ws),

where
Fs = 0.a (T, V) X Area(T) x (T, NSw),
Ared(Z) = {[w] | ~wiffw’ =w+ v, ev =0}

e Interested in space of Cauchy data Cs

Cs = {® € F& | s.t. (EL)|s(®) = 0}.

e The restriction of the EL equations to the boundary give rise to

constraints,
1- 3 1-
eF, + glb’Y d,» =0, d,e— 51/}71& = [,
€ 3 1 3, _
i’y dw'(/} - Edwe'y 1/} =0

23



Extra: How to compute infinitesimal gauge transformations

Theorem

The constraints are invariant under the v—translation except the torsion
equation, which splits into the invariant constraint

1 -
e <dwe - vaw) =0,
and the structural constraint
1 -
€n | duwe — 51/}’Y¢ = €eo

where {e;, €,} is a basis of V.

Furthermore, for all w’ € A(X) there exists a unique decomposition
w’ = w + v, where w satisfies the structural constraint and ev = 0,
fixing uniquely a representative w € [w'].



Extra: How to compute infinitesimal gauge transformations

e The constraint are casted into functionals over FZ; by using

Lagrange multipliers
1-3
JHZ n er"‘aw’Y du
Z .
1 -
le= / c (edwe — ed;’yd;)
Jx 2
1_ 3 1 3
My = | 3x|erdsy—cdeery),
by

1€ T[1(Z, V), c € T[1(Z, A2V), x € T1](Z, NSw)
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Extra: How to compute infinitesimal gauge transformations

e The constraint are casted into functionals over FZ; by using
Lagrange multipliers

1 -
J/J:/:u er+*1/J’Y3dw¢
s 3!
1 -
LC—/c<edweef(/ry1/J>
Jx 2
1_ 3 1 3
M, = | Zx| ey du) — sduey™y |,
s 3 2

p € TA)(Z, V), c € TL)(Z, A?Y), x € T[1)(Z, NSu)
e can use the basis {ej, e} of V to split 1 = tce + Ae,,. obtaining

1 1 -
[P = / ng(ez)Fw + —Lgewfdww,
b 7 3l
1 -
Hy= [ Xe, | eF, + =9~3d,v ).
- 3l

25



Extra: How to compute infinitesimal gauge transformations

e can preserve the boundary set by introducing transformation
Pg — Pg — ng(wfwu) — M%w, then

1 1 -
P = / Z1e€?Fy, + te(w — wo)ed, e — —ewyz’LE’%ﬁ.

26



Extra: How to compute infinitesimal gauge transformations

e can preserve the boundary set by introducing transformation
Pg — Pg — ng(wfwu) — M%w, then

1 1 -
P = / Z1e€?Fy, + te(w — wo)ed, e — —ewyz’LE’%ﬁ.

Proposition
The Hamiltonian vector fields of the constraints are the infinitesimal
gauge transformations, i.e. vector fields X; = {P¢, L., H, M, } such
that vx, @y = 0fj, where fj = {P¢, L, Hx, M, }. Explicitly
Le = [c, €] L, =d,c Ly = [c,¢]
Pe=-Lg%e P, =—1eFy —L°(w—wo) Py =-LY

_ 1 _
M. = —xv eM,, = §x73dw¢ My =d,x (1)



