Syzygy Modules and the D(2)-problem

In the Case of Dihedral Groups

John Evans j.evans8@herts.ac.uk

Plan for today

Wall's D(2)-problem

Syzygy Modules

Syzygies of Cyclic Groups

Syzygies of Dihedral Groups D_{2p}

Bringing this back to Wall's D(2)-problem

Wall's D(2)-Problem

- Arose from an attempt during the 1960s to classify compact manifolds by means of 'surgery'.
- ▶ Key Figures: C.T.C. Wall, W. Browder, S.P. Novikov
- Earlier key figures: Thom, Wallace, Milnor, Smale.

Wall's D(2)-Problem

- Arose from an attempt during the 1960s to classify compact manifolds by means of 'surgery'.
- ▶ Key Figures: C.T.C. Wall, W. Browder, S.P. Novikov
- Earlier key figures: Thom, Wallace, Milnor, Smale.
- Two key papers by Wall:
 - Poincaré Complexes 1
 - Finiteness Conditions for CW Complexes.

Foundational Question: What conditions are necessary to impose before a space can be homotopy equivalent to one of dimension $\leq n$.

How do we answer this question?

Obvious first condition: homology groups should vanish in dimensions > n. Clearly a necessary condition.

How do we answer this question?

- Obvious first condition: homology groups should vanish in dimensions > n. Clearly a necessary condition.
- Problem: homology is a notoriously bad indicator of dimension, e.g. 'Moore Space'.

Let *m* be a positive integer. The Moore space M(m, n) is formed from the *n*-sphere by attaching an (n + 1)-cell via an attaching map $S^n \to S^n$ of degree *m*. Then M(m, n) has dimension n + 1.

How do we answer this question?

- Obvious first condition: homology groups should vanish in dimensions > n. Clearly a necessary condition.
- Problem: homology is a notoriously bad indicator of dimension, e.g. 'Moore Space'.

Let *m* be a positive integer. The Moore space M(m, n) is formed from the *n*-sphere by attaching an (n + 1)-cell via an attaching map $S^n \to S^n$ of degree *m*. Then M(m, n) has dimension n + 1.

However, computing integral homology gives,

$$H_k(M(m, n); \mathbb{Z}) = \begin{cases} \mathbb{Z}/m\mathbb{Z}, & k = n; \\ 0, & k > n. \end{cases}$$

This seems to indicate the dimesion is dim = n.

Introducing cohomology

A better indicator of dimension is cohomology:

$$H^{k}(M(m, n); \mathbb{Z}) = \begin{cases} \mathbb{Z}/m\mathbb{Z}, & k = n+1; \\ 0, & k > n+1. \end{cases}$$

This now gives the correct answer that dim = n + 1.

Stating the D(n)-problem

If X̃ denotes the universal covering of X, the assumption that H_k(X̃, Z) = 0 for all k > n is enough to guarantee that X is equivalent to a space of dimension ≤ n + 1, but not necessarily of dimension ≤ n.

Stating the D(n)-problem

- If X̃ denotes the universal covering of X, the assumption that H_k(X̃, Z) = 0 for all k > n is enough to guarantee that X is equivalent to a space of dimension ≤ n + 1, but not necessarily of dimension ≤ n.
- Given this, we pose the problem as follows:

Wall's D(n)-problem: Let *X* be a complex of geometrical dimension n + 1. What further conditions are necessary and sufficient for *X* to be homotopy equivalent to a complex of dimension *n*?

Current state of the D(n)-problem

- Simply connected case: Milnor showed that the condition Hⁿ⁺¹(X, ℤ) = 0 is sufficient.
- Non-simply connected case: We still require $H_{n+1}(\tilde{X}, \mathbb{Z}) = 0$.
 - Wall showed that for n ≥ 3, the additional condition, both necessary and sufficient, is that Hⁿ⁺¹(X, B) = 0 for all coefficient bundles B.
 - The case n = 1 resolved following the Stallings-Swan proof that groups of cohomological dimension one are free.

This leaves the case n = 2

Wall's D(2)-problem: Let *X* be a finite connected cell complex of geometrical dimension 3, and suppose that

 $H_3(\tilde{X}, \mathbb{Z}) = H^3(X, \mathcal{B}) = 0$

for all coeficient systems \mathcal{B} on X. Is it true that X is homotopy equivalent to a finite complex of dimension 2?

- The D(2)-problem is parametrized by the fundamental group, i.e. each finitely presented group G has its own D(2)-problem.
- We say G has the D(2)-property when the above question is answered in the affirmative.
- We say the D(2)-property fails for *G* if there is a finite 3-complex X_G with $\pi_1(X_G) \cong G$ which answers the above question in the negative.

Relationship with an older problem

▶ If *K* is a finite 2-complex with $\pi_1(K) = G$, we obtain an exact sequence of $\mathbb{Z}[G]$ -modules,

$$0 \to \pi_2(K) \to C_2(K) \stackrel{\partial_2}{\to} C_1(K) \stackrel{\partial_1}{\to} C_0(K) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0.$$

where $C_n(K) = H_n(\tilde{K}^{(n)}, \tilde{K}^{(n-1)})$ is the group of cellular *n*-chains in the universal cover of *K*.

Relationship with an older problem

▶ If *K* is a finite 2-complex with $\pi_1(K) = G$, we obtain an exact sequence of $\mathbb{Z}[G]$ -modules,

$$0 \to \pi_2(K) \to C_2(K) \stackrel{\partial_2}{\to} C_1(K) \stackrel{\partial_1}{\to} C_0(K) \stackrel{\epsilon}{\to} \mathbb{Z} \to 0.$$

where $C_n(K) = H_n(\tilde{K}^{(n)}, \tilde{K}^{(n-1)})$ is the group of cellular *n*-chains in the universal cover of *K*.

► Each C_n(K) is a free module over Z[G]. This suggests that we take, as algebraic models for geometric 2-complexes, arbitrary exact sequences of the form,

$$0 \rightarrow J \rightarrow F_2 \stackrel{\partial_2}{\rightarrow} F_1 \stackrel{\partial_1}{\rightarrow} F_0 \stackrel{\epsilon}{\rightarrow} \mathbb{Z} \rightarrow 0,$$

where F_i is finitely generated and free over $\mathbb{Z}[G]$.

▶ We call such objects algebraic 2-complexes over *G*.

Relationship with an older problem

Realization Problem: Let *G* be a finitely presented group. Is every algebraic 2-complex geometrically realizable; that is, homotopy equivalent in the algebraic sense, to a complex of the form $C_*(K)$, where *K* is a finite 2-complex?

Key point: The D(2)-property holds for *G* if and only if each algebraic 2-complex over *G* is geometrically realizable.

What are syzygy modules?

- ▶ The basic model in module theory is that of a vector space over a field.
- Linear algebra is rendered tractable by the fact that every module over a field is free.

What are syzygy modules?

- ▶ The basic model in module theory is that of a vector space over a field.
- Linear algebra is rendered tractable by the fact that every module over a field is free.
- Over a general ring, this freeness need not be the norm.
- Nevertheless, when a module *M* is not free, it is natural to make a first approximation to it being free. We do this by taking a surjective homomorphism $\varphi: F_0 \to M$, where F_0 is free. We obtain an exact sequence,

$$0 \to K_1 \to F_0 \stackrel{\varphi}{\to} M \to 0.$$

• We sometimes regard the kernel K_1 as a first derivative of M.

What are syzygy modules?

- ▶ The basic model in module theory is that of a vector space over a field.
- Linear algebra is rendered tractable by the fact that every module over a field is free.
- Over a general ring, this freeness need not be the norm.
- Nevertheless, when a module *M* is not free, it is natural to make a first approximation to it being free. We do this by taking a surjective homomorphism $\varphi: F_0 \to M$, where F_0 is free. We obtain an exact sequence,

$$0 o K_1 o F_0 \stackrel{\varphi}{ o} M o 0.$$

- We sometimes regard the kernel K_1 as a *first derivative* of *M*.
- We can now do the same thing and again approximate K_1 by a free module:

$$0 \rightarrow K_2 \rightarrow F_1 \rightarrow K_1 \rightarrow 0.$$

Free resolutions

Iterating, we obtain a long exact sequence¹:

The intermediate models K_n are called the syzygies of M, with K_n being the n^{th} syzygy module of M.

¹Free resolutions were made famous by Hilbert and his work on Invariant Theory.

Uniqueness of syzygies

It is immediately obvious that syzygy module cannot be unique.

Return to 0 → K₁ → F₀ → M → 0. If F is a free module then we can stabilize the middle term to give another exact sequence,

$$0 \to K_1 \oplus F \to F_0 \oplus F \to M \to 0.$$

If K_1 is a first syzygy of M, then so too is $K_1 \oplus F$.

Uniqueness of syzygies

- It is immediately obvious that syzygy module cannot be unique.
- Return to 0 → K₁ → F₀ → M → 0. If F is a free module then we can stabilize the middle term to give another exact sequence,

 $0 \to K_1 \oplus F \to F_0 \oplus F \to M \to 0.$

If K_1 is a first syzygy of M, then so too is $K_1 \oplus F$.

- In the original context of Invariant Theory, the idea of uniqueness was introduced by trying to make the resolution minimal in some sense.
- This fails quite badly in our context and so we instead turn to stable syzygies.

Schanuel's Lemma and Stability

Suppose we have two exact sequences of modules over a ring Λ :

$$0 \to K \to \Lambda^n \to M \to 0$$
 and $0 \to K' \to \Lambda^m \to M \to 0$.

Schanuel: Then $K \oplus \Lambda^m \cong K' \oplus \Lambda^n$.

Schanuel's Lemma and Stability

Suppose we have two exact sequences of modules over a ring Λ :

```
0 \to K \to \Lambda^n \to M \to 0 and 0 \to K' \to \Lambda^m \to M \to 0.
```

Schanuel: Then $K \oplus \Lambda^m \cong K' \oplus \Lambda^n$.

Given the above, we say two Λ -modules K, K' are *stably equivalent* (written $K \sim K'$) if there exist some positive integers m, n such that $K \oplus \Lambda^m \cong K' \oplus \Lambda^n$.

Schanuel's Lemma and Stability

Suppose we have two exact sequences of modules over a ring Λ :

```
0 \to K \to \Lambda^n \to M \to 0 and 0 \to K' \to \Lambda^m \to M \to 0.
```

Schanuel: Then $K \oplus \Lambda^m \cong K' \oplus \Lambda^n$.

Given the above, we say two Λ -modules K, K' are *stably equivalent* (written $K \sim K'$) if there exist some positive integers m, n such that $K \oplus \Lambda^m \cong K' \oplus \Lambda^n$.

- \blacktriangleright ~ is an equivalence relation.
- If we look at stable syzygies then we have uniqueness.
- We will write $\Omega_n = [K_n]$ for the stable class of the n^{th} syzygy.
- Stability does not need to equal isomorphism, i.e. $K \sim K' \neq K \cong K'$, in general.

How many (stable) syzygies are there?

Let $M = \mathbb{Z}$. For a finite group *G*, there are *a priori* two possibilities:

- The stable modules $\Omega_n(\mathbb{Z})$ are isomorphically distinct; or
- $\Omega_n(\mathbb{Z}) \cong \Omega_m(\mathbb{Z})$ for some $m, n \in \mathbb{Z}$ with $m \neq n$.

How many (stable) syzygies are there?

Let $M = \mathbb{Z}$. For a finite group *G*, there are *a priori* two possibilities:

- The stable modules $\Omega_n(\mathbb{Z})$ are isomorphically distinct; or
- $\Omega_n(\mathbb{Z}) \cong \Omega_m(\mathbb{Z})$ for some $m, n \in \mathbb{Z}$ with $m \neq n$.

We say that n > 0 is a *free cohomological period* of *G* if $\Omega_{n+k}(\mathbb{Z}) \cong \Omega_k(\mathbb{Z})$ for all $k \in \mathbb{Z}$. We note that this is equivalent to the existence of an exact sequence of the form,

$$0 \to \mathbb{Z} \to \textit{F}_{n-1} \to \dots \to \textit{F}_0 \to \mathbb{Z} \to 0,$$

in which each F_i is finitely generated and free over \mathbb{Z} .

A cohomological free period is necessarily even.

Cohomological free period - Examples

- Cyclic of order n, C_n : This has cohomological period 2.
- ▶ Dihedral of order 4n + 2, D_{4n+2} : This has cohomological period 4.
- Groups of order pq, where p, q are distinct primes such that q|p-1, $C_p \rtimes C_q$: This has cohomological period 2q
- Quaternionic groups of order 4n, where $n \ge 2$, Q(4n): This has cohomological period 4.
- For an odd prime p, $C_p \times C_p$ is *not* periodic.

A group structure on syzygies

- Suppose *G* has cohomological period n > 0.
- If we consider the tensor product − ⊗_Z − over Z, then we can form and abelian group of order *n* on Ω_r(Z).
- Commutativity and associativity follow directly from the tensor product. It therefore remains to show closure, identity and inverse.
- We will show this for two examples.

Some preliminaries

- ► Throughout, we work with ℤ[G]-lattices, i.e. ℤ[G]-modules whose underlying abelian group is finitely generated and free.
- When *M*, *N* are Z[*G*]-lattices of ranks *m*, *n*, respectively, the tensor product *M* ⊗ *N* is a Z[*G*]-lattice of rank *mn* with *G*-action given by (*ν* ⊗ ω)*g* = *νg* ⊗ ω*g*.
- ► Working with lattices confers several advantages, notably that the dual of a short exact sequence of Z[G]-lattices is again a short exact sequence of Z[G]-lattices (in which the arrows are reversed). This property extends to exact sequences of finite length.
- We denote the category of finitely generated $\mathbb{Z}[G]$ -lattices by $\mathcal{F}(\mathbb{Z}[G])$.

Syzygy modules for cyclic groups

• Set
$$\Lambda_0 := \mathbb{Z}[C_p]$$
, where $C_n = \langle x \mid x^p = 1 \rangle$.

Syzygy modules for cyclic groups

• Set
$$\Lambda_0 := \mathbb{Z}[C_p]$$
, where $C_n = \langle x \mid x^p = 1 \rangle$.

There is a free resolution of period two given by:

$$0 \to \mathbb{Z} \xrightarrow{\epsilon^*} \Lambda_0 \xrightarrow{x-1} \Lambda_0 \xrightarrow{\epsilon} \mathbb{Z} \to 0,$$

where ϵ is the augmentation map, and ϵ^* is its dual.

• We denote the augmentation ideal of Λ_0 by $I_C = ker(\epsilon)$.

Syzygy modules for cyclic groups

• Set
$$\Lambda_0 := \mathbb{Z}[C_p]$$
, where $C_n = \langle x \mid x^p = 1 \rangle$.

There is a free resolution of period two given by:

$$0 \to \mathbb{Z} \xrightarrow{\epsilon^*} \Lambda_0 \xrightarrow{x-1} \Lambda_0 \xrightarrow{\epsilon} \mathbb{Z} \to 0,$$

where ϵ is the augmentation map, and ϵ^* is its dual.

- We denote the augmentation ideal of Λ_0 by $I_C = ker(\epsilon)$.
- We can now read off the syzygies from the above as follows:

$$\Omega_r(\mathbb{Z}) = \begin{cases} [\mathbb{Z}], & r \equiv 0 \pmod{2}; \\ [I_C], & r \equiv 1 \pmod{2}. \end{cases}$$

We will show the following for any prime *p*:

$$I_C \otimes I_C \cong \mathbb{Z} \oplus \Lambda_0^{p-2}.$$
 (1)

We will show the following for any prime *p*:

$$I_C \otimes I_C \cong \mathbb{Z} \oplus \Lambda_0^{p-2}.$$
 (1)

▶
$$I_C$$
 can be written, $I_C = span_{\mathbb{Z}}\{x - 1, x^2 - 1, ..., x^{p-1} - 1\}$, with $rk_{\mathbb{Z}}(I_C) = p - 1$.

We will show the following for any prime *p*:

$$I_C \otimes I_C \cong \mathbb{Z} \oplus \Lambda_0^{p-2}.$$
 (1)

►
$$I_C$$
 can be written, $I_C = span_{\mathbb{Z}}\{x - 1, x^2 - 1, ..., x^{p-1} - 1\}$, with $rk_{\mathbb{Z}}(I_C) = p - 1$.

► Consider the exact sequence, $0 \rightarrow I_C \xrightarrow{i} \Lambda_0 \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0$ and dualise,

$$0 o \mathbb{Z} \stackrel{\epsilon^*}{ o} \Lambda_0 \stackrel{i^*}{ o} I_C^* o 0$$

where $\epsilon^*(1) = \Sigma = \sum_{r=0}^{p-1} x^r$ is central.

We will show the following for any prime *p*:

$$I_C \otimes I_C \cong \mathbb{Z} \oplus \Lambda_0^{p-2}.$$
 (1)

►
$$I_C$$
 can be written, $I_C = span_{\mathbb{Z}}\{x - 1, x^2 - 1, ..., x^{p-1} - 1\}$, with $rk_{\mathbb{Z}}(I_C) = p - 1$.

► Consider the exact sequence, $0 \rightarrow I_C \xrightarrow{i} \Lambda_0 \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0$ and dualise,

$$0
ightarrow \mathbb{Z} \stackrel{\epsilon^*}{
ightarrow} \Lambda_0 \stackrel{i^*}{
ightarrow} I_C^*
ightarrow 0$$

where $\epsilon^*(1) = \Sigma = \sum_{r=0}^{p-1} x^r$ is central.

- Therefore, $Im(\epsilon^*)$ is the two-sided ideal of Λ_0 , generated by Σ .
- Consequently, we identify I_C^* with $\Lambda_0/(\Sigma)$, which is naturally a ring.

A basis for I_C^*

- Next, we put $\nu_r = i^*(x^r)$ where $\nu_0 = 1$, and $\nu_r = (\nu_1)^r = \nu^r$.
- If we think of I^{*}_C as a Λ₀-module, then I^{*}_C has a ℤ-basis {1, ν, ν²,..., ν^{p-2}}, in which
 - $\nu^p = 1,$
 - ► $\nu^{p-1} = -1 \nu \dots \nu^{p-2}$,
 - the action of x is to multiply by ν .
- ► It is well-known that $I_C \cong_{\Lambda_0} I_C^*$.

A useful description

If p = 2 then $I_C \otimes I_C \cong \mathbb{Z}$ is trivial. We therefore let $n \ge 3$ and define the following for $1 \le r \le p - 2$:

$$V(r) = span_{\mathbb{Z}}\{\nu^{r+k} \otimes \nu^k \mid 0 \le k \le p-1\} \subset I_{\mathcal{C}}^* \otimes I_{\mathcal{C}}^*.$$

A useful description

If p = 2 then $I_C \otimes I_C \cong \mathbb{Z}$ is trivial. We therefore let $n \ge 3$ and define the following for $1 \le r \le p - 2$:

$$V(r) = span_{\mathbb{Z}}\{\nu^{r+k} \otimes \nu^k \mid 0 \leq k \leq p-1\} \subset I_C^* \otimes I_C^*.$$

 $V(r) \cap (V(1) + \cdots + V(r-1) + V(r+1) + \cdots + V(p-2)) = \{0\}.$

• Set
$$V := V(1) \oplus \cdots \oplus V(p-2)$$

• Observe
$$rk_{\mathbb{Z}}(V) = p(p-2)$$
 and so $rk_{\mathbb{Z}}((I_{\mathcal{C}}^* \otimes I_{\mathcal{C}}^*)/V) = 1$.

• Observe $rk_{\mathbb{Z}}(V) = p(p-2)$ and so $rk_{\mathbb{Z}}((I_{\mathcal{C}}^* \otimes I_{\mathcal{C}}^*)/V) = 1$.

▶ By first showing $(I_C^* \otimes I_C^*)/V$ is torsion free, we have $(I_C^* \otimes I_C^*)/V \cong \mathbb{Z}$.

• Observe $rk_{\mathbb{Z}}(V) = p(p-2)$ and so $rk_{\mathbb{Z}}((I_C^* \otimes I_C^*)/V) = 1$.

- ▶ By first showing $(I_C^* \otimes I_C^*)/V$ is torsion free, we have $(I_C^* \otimes I_C^*)/V \cong \mathbb{Z}$.
- In particular, we can construct a useful basis.
- Consider the basis $\{\nu^i \otimes \nu^j \mid 0 \le i, j \le p-2\}$ of $I_C^* \otimes I_C^*$.

• Observe $rk_{\mathbb{Z}}(V) = p(p-2)$ and so $rk_{\mathbb{Z}}((I_{C}^{*} \otimes I_{C}^{*})/V) = 1$.

- ▶ By first showing $(I_C^* \otimes I_C^*)/V$ is torsion free, we have $(I_C^* \otimes I_C^*)/V \cong \mathbb{Z}$.
- In particular, we can construct a useful basis.
- Consider the basis { νⁱ ⊗ ν^j | 0 ≤ i, j ≤ p − 2} of I^{*}_C ⊗ I^{*}_C. By performing elementary basis transformations, this can be replaced by the following basis:

$$\{\nu^{r+k} \otimes \nu^k \mid 1 \le r \le p-2, 0 \le k \le p-1\} \cup \{T\},\$$

where

$$T = 1 \otimes 1 + 1 \otimes \nu + 1 \otimes \nu^{2} + \cdots + 1 \otimes \nu^{p-2} + \nu \otimes \nu + \nu \otimes \nu^{2} + \cdots + \nu \otimes \nu^{p-2} + \nu^{2} \otimes \nu^{2} + \cdots + \nu^{2} \otimes \nu^{p-2}$$

 $\cdot \cdot \cdot + \nu^{p-2} \otimes \nu^{p-2}$

▶ So $(I_C^* \otimes I_C^*)/V$ is generated by $\natural(T)$, where $\natural : I_C^* \otimes I_C^* \to (I_C^* \otimes I_C^*)/V$ is the natural surjection.

- ▶ So $(I_C^* \otimes I_C^*)/V$ is generated by $\natural(T)$, where $\natural : I_C^* \otimes I_C^* \to (I_C^* \otimes I_C^*)/V$ is the natural surjection.
- ► Clear that $T \in I_C^* \otimes I_C^*$ but $T \notin V$, and that Tx = T, thereby showing that *x* acts trivially on $(I_C^* \otimes I_C^*)/V$.
- Since *x* clearly acts trivially on ℤ, our isomorphism extends to one over Λ₀, i.e. (*I*^{*}_C ⊗ *I*^{*}_C)/*V* ≅_{Λ₀} ℤ.
- This gives the following short exact sequence,

$$0 \to V \to I^*_C \otimes I^*_C \to [\natural(T)) \to 0.$$

By dualising and using the self-duality of V ≅ Λ₀^{p-2} and [𝔅(T)) ≅ ℤ, the proof is complete.

- Set $\Lambda := \mathbb{Z}[D_{2p}]$, where p = 2n + 1 is an odd prime.
- Associated to Λ_0 is the canonical injection $i : \Lambda_0 \hookrightarrow \Lambda$.
- From this we can induce two maps on the categories of finitely generated lattices,
 - $i^* : \mathcal{F}(\Lambda) \to \mathcal{F}(\Lambda_0)$, given by restricting scalars to Λ_0 ,
 - $i_* : \mathcal{F}(\Lambda_0) \to \mathcal{F}(\Lambda)$, given by extending scalars; that is, $i_*(M) = M \otimes_{\Lambda_0} \Lambda$.

Set $\Lambda := \mathbb{Z}[D_{2p}]$, where p = 2n + 1 is an odd prime.

- Associated to Λ_0 is the canonical injection $i : \Lambda_0 \hookrightarrow \Lambda$.
- From this we can induce two maps on the categories of finitely generated lattices,
 - $i^* : \mathcal{F}(\Lambda) \to \mathcal{F}(\Lambda_0)$, given by restricting scalars to Λ_0 ,
 - $i_* : \mathcal{F}(\Lambda_0) \to \mathcal{F}(\Lambda)$, given by extending scalars; that is, $i_*(M) = M \otimes_{\Lambda_0} \Lambda$.
- Similarly, we have the canonical injection *j* : ℤ[*C*₂] → Λ and this too induces two maps on the categories of finitely generated lattices.

- Set $\Lambda := \mathbb{Z}[D_{2p}]$, where p = 2n + 1 is an odd prime.
- Associated to Λ_0 is the canonical injection $i : \Lambda_0 \hookrightarrow \Lambda$.
- From this we can induce two maps on the categories of finitely generated lattices,
 - $i^* : \mathcal{F}(\Lambda) \to \mathcal{F}(\Lambda_0)$, given by restricting scalars to Λ_0 ,
 - $i_* : \mathcal{F}(\Lambda_0) \to \mathcal{F}(\Lambda)$, given by extending scalars; that is, $i_*(M) = M \otimes_{\Lambda_0} \Lambda$.
- Similarly, we have the canonical injection *j* : ℤ[*C*₂] → Λ and this too induces two maps on the categories of finitely generated lattices.
- Both the restriction and extension of scalars functors have easily verified properties. They are,
 - additive,
 - exact, and
 - take free modules to free modules.

The augmentation ideal of Λ will be denoted by *I_G*, and the augmentation ideals of Λ₀ and Z[*C*₂] will be denoted by *I_C* and *I*₂, respectively.

The augmentation ideal of Λ will be denoted by *I_G*, and the augmentation ideals of Λ₀ and Z[*C*₂] will be denoted by *I_C* and *I*₂, respectively.

• By $[\alpha)$ we mean the right ideal generated by α ; that is $[\alpha) = \{\alpha \lambda \mid \lambda \in \Lambda\}$.

ln particular, any ideal in Λ is a Λ -lattice.

- The augmentation ideal of Λ will be denoted by *I_G*, and the augmentation ideals of Λ₀ and Z[*C*₂] will be denoted by *I_C* and *I*₂, respectively.
- By $[\alpha)$ we mean the right ideal generated by α ; that is $[\alpha) = \{\alpha \lambda \mid \lambda \in \Lambda\}$.
- In particular, any ideal in Λ is a Λ-lattice.
- Set $\pi := (x^n 1)(y 1)$ and $\tilde{\rho} = (y 1)(x 1)$. We then define

$$\boldsymbol{P} = [\pi), \ \boldsymbol{R} = [\tilde{\rho}). \tag{2}$$

• Write $\Sigma_x = 1 + x + \cdots + x^{2n}$, which we observe is central in Λ .

- The augmentation ideal of Λ will be denoted by *I_G*, and the augmentation ideals of Λ₀ and Z[*C*₂] will be denoted by *I_C* and *I*₂, respectively.
- By $[\alpha)$ we mean the right ideal generated by α ; that is $[\alpha) = \{\alpha \lambda \mid \lambda \in \Lambda\}$.
- In particular, any ideal in Λ is a Λ-lattice.
- Set $\pi := (x^n 1)(y 1)$ and $\tilde{\rho} = (y 1)(x 1)$. We then define

$$\boldsymbol{P} = [\pi), \ \boldsymbol{R} = [\tilde{\rho}). \tag{2}$$

- Write $\Sigma_x = 1 + x + \cdots + x^{2n}$, which we observe is central in Λ .
- ▶ The ideal [x 1) decomposes as a direct sum $[x 1) = P \oplus R$.

- ▶ We saw that I_C^* has a \mathbb{Z} -basis, $\{\nu^r \mid 0 \le r \le p-2\}$ where $1 + \nu + \cdots + \nu^{p-1} = 0$.
- The action of C_p on I_C^* may be extended in one of two ways to an action of the dihedral group:

- ▶ We saw that I_C^* has a \mathbb{Z} -basis, $\{\nu^r \mid 0 \le r \le p-2\}$ where $1 + \nu + \cdots + \nu^{p-1} = 0$.
- The action of C_p on I_C^* may be extended in one of two ways to an action of the dihedral group:
 - Either: $\nu^{r} \cdot y = \nu^{-r} = \nu^{p-r}$ for $0 \le r \le p-2$;
 - or: $\nu^{r} \cdot y = -\nu^{-r} = -\nu^{p-r}$ for $0 \le r \le p-2$.

• Under the former, we denote $(I_C^*)_+$, and under the latter we denote $(I_C^*)_-$.

- ▶ We saw that I_C^* has a \mathbb{Z} -basis, $\{\nu^r \mid 0 \le r \le p-2\}$ where $1 + \nu + \cdots + \nu^{p-1} = 0$.
- The action of C_p on I_C^* may be extended in one of two ways to an action of the dihedral group:
 - Either: $\nu^r \cdot y = \nu^{-r} = \nu^{p-r}$ for $0 \le r \le p-2$;
 - or: $\nu^{r} \cdot y = -\nu^{-r} = -\nu^{p-r}$ for $0 \le r \le p-2$.
- Under the former, we denote $(I_C^*)_+$, and under the latter we denote $(I_C^*)_-$.
- $\blacktriangleright P \cong (I_C^*)_- \text{ and } R \cong (I_C^*)_+.$

• The augmentation ideal I_G decomposes as,

 $I_G \cong P \oplus [y-1)$

This has the effect of separating the x, y strands, in some sense.

- As such, we end up spending more time on P and R (along with two other modules soon to be met).
- ▶ In particular, direct computation shows $P \otimes [y 1) \cong \Lambda^n$.

The augmentation ideal I_G decomposes as,

 $I_G \cong P \oplus [y-1)$

This has the effect of separating the x, y strands, in some sense.

- As such, we end up spending more time on P and R (along with two other modules soon to be met).
- ▶ In particular, direct computation shows $P \otimes [y 1) \cong \Lambda^n$.
- Note, P and R are not isomorphic as Λ-modules, nor even stably isomorphic.
- ▶ Nevertheless, $P^* \cong R$ and $R^* \cong P$.

The augmentation ideal I_G decomposes as,

 $I_G \cong P \oplus [y-1)$

This has the effect of separating the x, y strands, in some sense.

- As such, we end up spending more time on P and R (along with two other modules soon to be met).
- ▶ In particular, direct computation shows $P \otimes [y 1) \cong \Lambda^n$.
- Note, P and R are not isomorphic as Λ-modules, nor even stably isomorphic.
- ▶ Nevertheless, $P^* \cong R$ and $R^* \cong P$.
- **b** Both (y 1) and (y + 1) are self-dual, but are *not* isomorphic, as Λ -modules.

Two more modules

▶ Define the modules *K* and *L* to be

$$K = [\Sigma_x, y - 1) \text{ and } L = [\Sigma_x, y + 1).$$
 (3)

Two more modules

Define the modules K and L to be

$$K = [\Sigma_x, y - 1) \text{ and } L = [\Sigma_x, y + 1).$$
 (3)

- Both K and L have \mathbb{Z} -rank p + 1.
- Further, $\Lambda/K \cong R$ and $\Lambda/L \cong P$.
- Finally, both K and L are self-dual; that is $K^* \cong K$ and $L^* \cong L$.

Spoiler for why these matter: D_{2p} has cohomological free period 4 and we have defined four modules: *K*, *P*, *L*, *R*.

How the modules interact under tensor product

K ⊗ *R*(*i*) ≅ *R*(*i*) ⊕ Λⁿ, for 1 ≤ *i* ≤ 2 where *R*(1) ≅ *P* and *R*(2) ≅ *R*; *K* ⊗ *K*(*i*) ≅ *K*(*i*) ⊕ Λⁿ⁺¹, for 1 ≤ *i* ≤ 2 where *K*(1) = *L* and *K*(2) = *K*;

How the modules interact under tensor product

- ► $K \otimes R(i) \cong R(i) \oplus \Lambda^n$, for $1 \le i \le 2$ where $R(1) \cong P$ and $R(2) \cong R$;
- $K \otimes K(i) \cong K(i) \oplus \Lambda^{n+1}$, for $1 \le i \le 2$ where K(1) = L and K(2) = K;
- $\blacktriangleright P \otimes P \cong L \oplus \Lambda^{n-1};$
- $\blacktriangleright P \otimes L \cong R \oplus \Lambda^n;$
- $\blacktriangleright P \otimes R \cong K \oplus \Lambda^{n-1}.$

How the modules interact under tensor product

- ► $K \otimes R(i) \cong R(i) \oplus \Lambda^n$, for $1 \le i \le 2$ where $R(1) \cong P$ and $R(2) \cong R$;
- ► $K \otimes K(i) \cong K(i) \oplus \Lambda^{n+1}$, for $1 \le i \le 2$ where K(1) = L and K(2) = K;
- $\blacktriangleright P \otimes P \cong L \oplus \Lambda^{n-1};$
- $\blacktriangleright P \otimes L \cong R \oplus \Lambda^n;$
- $\blacktriangleright P \otimes R \cong K \oplus \Lambda^{n-1}.$
- $\blacktriangleright \quad [y-1)\otimes [y-1)\cong [y+1)\oplus \Lambda^n$
- $\blacktriangleright \quad [y-1)\otimes [y+1)\cong [y-1)\oplus \Lambda^n$

We show $K \otimes ? \cong ? \oplus \Lambda^r$ for some $r \ge 0$ and where ? = K, P, L, R.

We show $K \otimes ? \cong ? \oplus \Lambda^r$ for some $r \ge 0$ and where ? = K, P, L, R.

- K has a \mathbb{Z} -basis given by $\{(y-1)x^i \mid 0 \le i \le p-1\} \cup \{\Sigma_x\}.$
- Define $K_0 = span_{\mathbb{Z}}\{(y-1), (y-1)x, \dots, (y-1)x^{p-1}\}.$
- Then K/K_0 is represented by the class of Σ_x .

We show $K \otimes ? \cong ? \oplus \Lambda^r$ for some $r \ge 0$ and where ? = K, P, L, R.

- K has a \mathbb{Z} -basis given by $\{(y-1)x^i \mid 0 \le i \le p-1\} \cup \{\Sigma_x\}.$
- Define $K_0 = span_{\mathbb{Z}}\{(y-1), (y-1)x, \dots, (y-1)x^{p-1}\}.$
- Then K/K_0 is represented by the class of Σ_x .
- Observe $\Sigma_x \cdot x = \Sigma_x$ and $\Sigma_x \cdot y = (y 1)\Sigma_x + \Sigma_x = \Sigma_x$ in K/K_0 .
- ▶ Thus, *x* and *y* act trivially on K/K_0 and it is therefore isomorphic to \mathbb{Z} .

We show $K \otimes ? \cong ? \oplus \Lambda^r$ for some $r \ge 0$ and where ? = K, P, L, R.

- K has a \mathbb{Z} -basis given by $\{(y-1)x^i \mid 0 \le i \le p-1\} \cup \{\Sigma_x\}.$
- Define $K_0 = span_{\mathbb{Z}}\{(y-1), (y-1)x, \dots, (y-1)x^{p-1}\}.$
- Then K/K_0 is represented by the class of Σ_x .
- Observe $\Sigma_x \cdot x = \Sigma_x$ and $\Sigma_x \cdot y = (y 1)\Sigma_x + \Sigma_x = \Sigma_x$ in K/K_0 .
- ▶ Thus, *x* and *y* act trivially on K/K_0 and it is therefore isomorphic to \mathbb{Z} .

In particular, we have an exact sequence of the form

$$0 \rightarrow K_0 \rightarrow K \rightarrow \mathbb{Z} \rightarrow 0.$$

As such, tensoring with any of the P, R, K or L yields the exact sequence

$$0 \to K_0 \otimes ? \to K \otimes ? \to ? \to 0.$$

Strategy for showing $P \otimes P \cong L \oplus \Lambda^{n-1}$

Recall, when looking at cyclic groups we showed

 $I_C^* \otimes I_C^* \cong_{\Lambda_0} [T) \oplus V,$

where $V = V(1) \oplus \cdots \oplus V(2n-1)$ and

$$V(r) = span_{\mathbb{Z}}\{
u^{r+k} \otimes
u^k \mid 0 \le k \le 2n\}.$$

Strategy for showing $P \otimes P \cong L \oplus \Lambda^{n-1}$

Recall, when looking at cyclic groups we showed

 $I_C^* \otimes I_C^* \cong_{\Lambda_0} [T) \oplus V,$

where $V = V(1) \oplus \cdots \oplus V(2n-1)$ and

$$V(r) = span_{\mathbb{Z}}\{\nu^{r+k} \otimes \nu^k \mid 0 \le k \le 2n\}.$$

We also introduced the *y*-action ν^r ⋅ y = -ν^{2n+1-r}.
{ν^r | 0 ≤ r ≤ 2n - 1} is a ℤ-basis for I^{*}_C, and under this action (I^{*}_C)₋ ≅ P.

Strategy for showing $P \otimes P \cong L \oplus \Lambda^{n-1}$

Recall, when looking at cyclic groups we showed

 $I_C^* \otimes I_C^* \cong_{\Lambda_0} [T) \oplus V,$

where $V = V(1) \oplus \cdots \oplus V(2n-1)$ and

$$V(r) = span_{\mathbb{Z}}\{\nu^{r+k} \otimes \nu^k \mid 0 \le k \le 2n\}.$$

• We also introduced the *y*-action $\nu^r \cdot y = -\nu^{2n+1-r}$.

▶ { $\nu^r \mid 0 \le r \le 2n-1$ } is a \mathbb{Z} -basis for I_C^* , and under this action $(I_C^*)_- \cong P$. So, we find the free part of *V*, showing that for $r \ge 2$,

 $V_r = V(r) + V(2n+1-r)$ is a Λ -module, and $V_r \cong \Lambda$.

Strategy for showing $P \otimes P \cong L \oplus \Lambda^{n-1}$

• This leaves us with [T) + V(1) and $V' = V(2) + \cdots + V(2n-1) \cong \Lambda^{n-1}$.

We have a split short exact sequence,

$$0 \to \Lambda^{n-1} \to (I_C^*)_- \otimes (I_C^*)_- \to \natural (T + V(1)) \to 0.$$

where $\natural : (I_C^*)_- \otimes (I_C^*)_- \to ((I_C^*)_- \otimes (I_C^*)_-)/V'.$
$$\blacktriangleright \ L \cong \natural (T + V(1)).$$

Forming a free resolution

- ▶ Recall, the augmentation ideal of Λ splits as $I_G \cong P \oplus [y 1)$.
- We therefore have the short exact sequence,

$$0
ightarrow P \oplus [y-1)
ightarrow \Lambda
ightarrow \mathbb{Z}
ightarrow 0$$

Forming a free resolution

▶ Recall, the augmentation ideal of Λ splits as $I_G \cong P \oplus [y - 1)$.

We therefore have the short exact sequence,

$$0 \rightarrow P \oplus [y-1) \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0.$$

• Tensoring with $P \oplus [y - 1)$ gives us another short exact sequence,

$$0 \rightarrow (P \oplus [y-1)) \otimes (P \otimes [y-1)) \rightarrow \Lambda^{2p-1} \rightarrow P \oplus [y-1) \rightarrow 0.$$

Forming a free resolution

▶ Recall, the augmentation ideal of Λ splits as $I_G \cong P \oplus [y - 1)$.

We therefore have the short exact sequence,

$$0 \rightarrow P \oplus [y-1) \rightarrow \Lambda \rightarrow \mathbb{Z} \rightarrow 0.$$

• Tensoring with $P \oplus (y - 1)$ gives us another short exact sequence,

$$0 \rightarrow (P \oplus [y-1)) \otimes (P \otimes [y-1)) \rightarrow \Lambda^{2p-1} \rightarrow P \oplus [y-1) \rightarrow 0.$$

Tidying up using the earlier computations, we get the following:

$$0 \to L \oplus [y+1) \oplus \Lambda^{4n-1} \to \Lambda^{4n+1} \to P \oplus [y-1) \to 0.$$

A de-stabilization lemma

- A Λ -module *M* is *n*-coproective if $H^k(M, \Lambda) = 0$ for $1 \le k \le n$.
- If M is a Λ -lattice, then it is 1-coprojective.
- ▶ **Lemma:** Let $0 \to J \oplus Q_0 \xrightarrow{j} Q_1 \to M \to 0$ be an exact sequence of Λ -mdoules in which Q_0 , Q_1 are projective. If *M* is 1-coprojective, then $Q_1/j(Q_0)$ is projective.

Applying the de-stabilization lemma

$$0 \to L \oplus [y+1) \oplus \Lambda^{4n-1} \xrightarrow{i} \Lambda^{4n+1} \to P \oplus [y-1) \to 0.$$

and alter as follows:

$$0 \rightarrow L \oplus [y+1) \rightarrow S \rightarrow P \oplus [y-1) \rightarrow 0.$$

where $S = \Lambda^{4n+1}/i(\Lambda^{4n-1})$.

Applying the de-stabilization lemma

$$0 \rightarrow L \oplus [y+1) \oplus \Lambda^{4n-1} \xrightarrow{i} \Lambda^{4n+1} \rightarrow P \oplus [y-1) \rightarrow 0.$$

and alter as follows:

$$0 \rightarrow L \oplus [y+1) \rightarrow S \rightarrow P \oplus [y-1) \rightarrow 0.$$

where $S = \Lambda^{4n+1}/i(\Lambda^{4n-1})$.

- By the de-stabilization lemma, *S* must be projective.
- S also occurs in the exact sequence,

$$0 \rightarrow \Lambda^{4n-1} \rightarrow \Lambda^{4n+1} \rightarrow S \rightarrow 0.$$

As this exact sequence splits, S is stably free of rank 2. However, over D_{2p} all stably free modules are free (Eichler).

Keep tensoring with I_G

This leaves us with the following exact sequence,

$$0 \rightarrow L \oplus [y+1) \rightarrow \Lambda^2 \rightarrow P \oplus [y-1) \rightarrow 0.$$

Now we repeat by tensoring with $P \oplus [y - 1)$ again:

$$0
ightarrow R \oplus [y-1)
ightarrow \Lambda^2
ightarrow L \oplus [y+1)
ightarrow 0.$$

Keep tensoring with I_G

This leaves us with the following exact sequence,

$$0 \rightarrow L \oplus [y+1) \rightarrow \Lambda^2 \rightarrow P \oplus [y-1) \rightarrow 0.$$

Now we repeat by tensoring with $P \oplus [y - 1)$ again:

$$0 \rightarrow R \oplus [y-1) \rightarrow \Lambda^2 \rightarrow L \oplus [y+1) \rightarrow 0.$$

$$0 \to \mathcal{K} \oplus [y+1) \to \Lambda^2 \to \mathcal{R} \oplus [y-1) \to 0.$$

Keep tensoring with I_G

This leaves us with the following exact sequence,

$$0 \to L \oplus [y+1) \to \Lambda^2 \to P \oplus [y-1) \to 0.$$

Now we repeat by tensoring with $P \oplus [y - 1)$ again:

$$0 \rightarrow R \oplus [y-1) \rightarrow \Lambda^2 \rightarrow L \oplus [y+1) \rightarrow 0.$$

And again:

$$0 \rightarrow K \oplus [y+1) \rightarrow \Lambda^2 \rightarrow R \oplus [y-1) \rightarrow 0.$$

$$0 \rightarrow P \oplus [y-1) \rightarrow \Lambda^2 \rightarrow K \oplus [y+1) \rightarrow 0.$$

A free resolution...

Splicing together the exact sequences gives us a 'diagonalised' free resolution:

...and the syzygies

Reading them off from the free resolution, we see that the syzygies are as follows:

$$\Omega_r(\mathbb{Z}) = \begin{cases} [\mathbb{Z}] = [\mathcal{K}] \oplus [y+1], & r \equiv 0 \pmod{4}; \\ [P] \oplus [y-1], & r \equiv 1 \pmod{4}; \\ [L] \oplus [y+1], & r \equiv 2 \pmod{4}; \\ [R] \oplus [y-1], & r \equiv 3 \pmod{4}. \end{cases}$$

Notice the paradoxical nature of stable classes. Even though Z is an indecomposable Λ-module, its stability class decomposes non-trivially.

Bringing this back to Wall's D(2)-problem

- From its relationship to the Realization problem, the key is to understand the third syzygy module Ω₃(Z).
- In particular, we want each minimal module J ∈ Ω₃(ℤ) to be geometrically realizable and full.
- ▶ We have shown, $(I_C)_+ \oplus [y-1) \in \Omega_3(\mathbb{Z})$ and it is in fact minimal.

Bringing this back to Wall's D(2)-problem

- From its relationship to the Realization problem, the key is to understand the third syzygy module Ω₃(Z).
- In particular, we want each minimal module J ∈ Ω₃(ℤ) to be geometrically realizable and full.
- ▶ We have shown, $(I_C)_+ \oplus [y-1) \in \Omega_3(\mathbb{Z})$ and it is in fact minimal.
- Question: Are there any other minimal modules?
- Answer: No!

Bringing this back to Wall's D(2)-problem

- From its relationship to the Realization problem, the key is to understand the third syzygy module Ω₃(Z).
- In particular, we want each minimal module J ∈ Ω₃(ℤ) to be geometrically realizable and full.
- ▶ We have shown, $(I_C)_+ \oplus [y-1) \in \Omega_3(\mathbb{Z})$ and it is in fact minimal.
- Question: Are there any other minimal modules?
- Answer: No!
- Question: Is this module geometrically realizable and full?
- Answer: Yes!
- This therefore offers us a proof that D_{2p} does in fact have the D(2)-property.

