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Bringing this back to Wall’s D(2)-problem



Wall’s D(2)-Problem

▶ Arose from an attempt during the 1960s to classify compact manifolds by means
of ‘surgery’.

▶ Key Figures: C.T.C. Wall, W. Browder, S.P. Novikov
▶ Earlier key figures: Thom, Wallace, Milnor, Smale.

▶ Two key papers by Wall:
▶ Poincaré Complexes 1
▶ Finiteness Conditions for CW Complexes.

Foundational Question: What conditions are necessary to impose before a space
can be homotopy equivalent to one of dimension ≤ n.
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How do we answer this question?

▶ Obvious first condition: homology groups should vanish in dimensions > n.
Clearly a necessary condition.

▶ Problem: homology is a notoriously bad indicator of dimension, e.g. ‘Moore
Space’.

Let m be a positive integer. The Moore space M(m, n) is formed from the n-sphere by
attaching an (n + 1)-cell via an attaching map Sn → Sn of degree m. Then M(m, n)
has dimension n + 1.
However, computing integral homology gives,

Hk(M(m, n);Z) =

{
Z/mZ, k = n;

0, k > n.

This seems to indicate the dimesion is dim = n.
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Introducing cohomology

A better indicator of dimension is cohomology:

Hk(M(m, n);Z) =

{
Z/mZ, k = n + 1;

0, k > n + 1.

This now gives the correct answer that dim = n + 1.



Stating the D(n)-problem

▶ If X̃ denotes the universal covering of X , the assumption that Hk(X̃ , Z) = 0 for all
k > n is enough to guarantee that X is equivalent to a space of dimension
≤ n + 1, but not necessarily of dimension ≤ n.

▶ Given this, we pose the problem as follows:

Wall’s D(n)-problem: Let X be a complex of geometrical dimension n + 1. What
further conditions are necessary and sufficient for X to be homotopy equivalent to a
complex of dimension n?
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Current state of the D(n)-problem

▶ Simply connected case: Milnor showed that the condition Hn+1(X , Z) = 0 is
sufficient.

▶ Non-simply connected case: We still require Hn+1(X̃ , Z) = 0.
▶ Wall showed that for n ≥ 3, the additional condition, both necessary and sufficient, is

that Hn+1(X , B) = 0 for all coefficient bundles B.
▶ The case n = 1 resolved following the Stallings-Swan proof that groups of

cohomological dimension one are free.



This leaves the case n = 2

Wall’s D(2)-problem: Let X be a finite connected cell complex of geometrical
dimension 3, and suppose that

H3(X̃ , Z) = H3(X , B) = 0

for all coeficient systems B on X . Is it true that X is homotopy equivalent to a finite
complex of dimension 2?

▶ The D(2)-problem is parametrized by the fundamental group, i.e. each finitely
presented group G has its own D(2)-problem.

▶ We say G has the D(2)-property when the above question is answered in the
affirmative.

▶ We say the D(2)-property fails for G if there is a finite 3-complex XG with
π1(XG) ∼= G which answers the above question in the negative.



Relationship with an older problem

▶ If K is a finite 2-complex with π1(K ) = G, we obtain an exact sequence of
Z[G]-modules,

0 → π2(K ) → C2(K )
∂2→ C1(K )

∂1→ C0(K )
ϵ→ Z → 0.

where Cn(K ) = Hn(K̃ (n), K̃ (n−1)) is the group of cellular n-chains in the universal
cover of K .

▶ Each Cn(K ) is a free module over Z[G]. This suggests that we take, as algebraic
models for geometric 2-complexes, arbitrary exact sequences of the form,

0 → J → F2
∂2→ F1

∂1→ F0
ϵ→ Z → 0,

where Fi is finitely generated and free over Z[G].
▶ We call such objects algebraic 2-complexes over G.
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Relationship with an older problem

Realization Problem: Let G be a finitely presented group. Is every algebraic
2-complex geometrically realizable; that is, homotopy equivalent in the algebraic
sense, to a complex of the form C∗(K ), where K is a finite 2-complex?

Key point: The D(2)-property holds for G if and only if each algebraic 2-complex over
G is geometrically realizable.



What are syzygy modules?

▶ The basic model in module theory is that of a vector space over a field.
▶ Linear algebra is rendered tractable by the fact that every module over a field is

free.

▶ Over a general ring, this freeness need not be the norm.
▶ Nevertheless, when a module M is not free, it is natural to make a first

approximation to it being free. We do this by taking a surjective homomorphism
φ : F0 → M, where F0 is free. We obtain an exact sequence,

0 → K1 → F0
φ→ M → 0.

▶ We sometimes regard the kernel K1 as a first derivative of M.
▶ We can now do the same thing and again approximate K1 by a free module:

0 → K2 → F1 → K1 → 0.
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Free resolutions

Iterating, we obtain a long exact sequence1:

· · · F6 F5 F4 F3 F2 F1 F0 M 0

K1K3K5

K2K4K6

The intermediate models Kn are called the syzygies of M, with Kn being the nth syzygy
module of M.

1Free resolutions were made famous by Hilbert and his work on Invariant Theory.



Uniqueness of syzygies

▶ It is immediately obvious that syzygy module cannot be unique.
▶ Return to 0 → K1 → F0 → M → 0. If F is a free module then we can stabilize the

middle term to give another exact sequence,

0 → K1 ⊕ F → F0 ⊕ F → M → 0.

If K1 is a first syzygy of M, then so too is K1 ⊕ F .

▶ In the original context of Invariant Theory, the idea of uniqueness was introduced
by trying to make the resolution minimal in some sense.

▶ This fails quite badly in our context and so we instead turn to stable syzygies.
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Schanuel’s Lemma and Stability

Suppose we have two exact sequences of modules over a ring Λ:

0 → K → Λn → M → 0 and 0 → K ′ → Λm → M → 0.

Schanuel: Then K ⊕ Λm ∼= K ′ ⊕ Λn.

Given the above, we say two Λ-modules K , K ′ are stably equivalent (written K ∼ K ′) if
there exist some positive integers m, n such that K ⊕ Λm ∼= K ′ ⊕ Λn.
▶ ∼ is an equivalence relation.
▶ If we look at stable syzygies then we have uniqueness.
▶ We will write Ωn = [Kn] for the stable class of the nth syzygy.
▶ Stability does not need to equal isomorphism, i.e. K ∼ K ′ ̸⇒ K ∼= K ′, in general.
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How many (stable) syzygies are there?

Let M = Z. For a finite group G, there are a priori two possibilities:
▶ The stable modules Ωn(Z) are isomorphically distinct; or
▶ Ωn(Z) ∼= Ωm(Z) for some m, n ∈ Z with m ̸= n.

We say that n > 0 is a free cohomological period of G if Ωn+k(Z) ∼= Ωk(Z) for all
k ∈ Z. We note that this is equivalent to the existence of an exact sequence of the
form,

0 → Z → Fn−1 → · · · → F0 → Z → 0,

in which each Fi is finitely generated and free over Z.
▶ A cohomological free period is necessarily even.
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Cohomological free period - Examples

▶ Cyclic of order n, Cn: This has cohomological period 2.
▶ Dihedral of order 4n + 2, D4n+2: This has cohomological period 4.
▶ Groups of order pq, where p, q are distinct primes such that q|p − 1, Cp ⋊ Cq :

This has cohomological period 2q
▶ Quaternionic groups of order 4n, where n ≥ 2, Q(4n): This has cohomological

period 4.
▶ For an odd prime p, Cp × Cp is not periodic.



A group structure on syzygies

▶ Suppose G has cohomological period n > 0.
▶ If we consider the tensor product −⊗Z − over Z, then we can form and abelian

group of order n on Ωr (Z).
▶ Commutativity and associativity follow directly from the tensor product. It therefore

remains to show closure, identity and inverse.
▶ We will show this for two examples.



Some preliminaries

▶ Throughout, we work with Z[G]-lattices, i.e. Z[G]-modules whose underlying
abelian group is finitely generated and free.

▶ When M, N are Z[G]-lattices of ranks m, n, respectively, the tensor product
M ⊗ N is a Z[G]-lattice of rank mn with G-action given by (ν ⊗ ω)g = νg ⊗ ωg.

▶ Working with lattices confers several advantages, notably that the dual of a short
exact sequence of Z[G]-lattices is again a short exact sequence of Z[G]-lattices
(in which the arrows are reversed). This property extends to exact sequences of
finite length.

▶ We denote the category of finitely generated Z[G]-lattices by F(Z[G]).



Syzygy modules for cyclic groups

▶ Set Λ0 := Z[Cp], where Cn = ⟨x | xp = 1⟩.

▶ There is a free resolution of period two given by:

0 → Z ϵ∗→ Λ0
x−1→ Λ0

ϵ→ Z → 0,

where ϵ is the augmentation map, and ϵ∗ is its dual.
▶ We denote the augmentation ideal of Λ0 by IC = ker(ϵ).
▶ We can now read off the syzygies from the above as follows:

Ωr (Z) =

{
[Z], r ≡ 0(mod 2);

[IC ], r ≡ 1(mod 2).
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The group operation

We will show the following for any prime p:

IC ⊗ IC ∼= Z⊕ Λp−2
0 . (1)

▶ IC can be written, IC = spanZ{x − 1, x2 − 1, . . . , xp−1 − 1}, with rkZ(IC) = p − 1.

▶ Consider the exact sequence, 0 → IC
i→ Λ0

ϵ→ Z → 0 and dualise,

0 → Z ϵ∗→ Λ0
i∗→ I∗C → 0

where ϵ∗(1) = Σ =
∑p−1

r=0 x r is central.
▶ Therefore, Im(ϵ∗) is the two-sided ideal of Λ0, generated by Σ.
▶ Consequently, we identify I∗C with Λ0/(Σ), which is naturally a ring.
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A basis for I∗C

▶ Next, we put νr = i∗(x r ) where ν0 = 1, and νr = (ν1)
r = νr .

▶ If we think of I∗C as a Λ0-module, then I∗C has a Z-basis {1, ν, ν2, . . . , νp−2}, in
which
▶ νp = 1,
▶ νp−1 = −1 − ν − · · · − νp−2,
▶ the action of x is to multiply by ν.

▶ It is well-known that IC ∼=Λ0 I∗C .



A useful description

If p = 2 then IC ⊗ IC ∼= Z is trivial.
We therefore let n ≥ 3 and define the following for 1 ≤ r ≤ p − 2:

V (r) = spanZ{νr+k ⊗ νk | 0 ≤ k ≤ p − 1} ⊂ I∗C ⊗ I∗C .

▶ For each 1 ≤ r ≤ p − 2, we have V (r) ∼= Λ0.
▶ For any 1 ≤ r ≤ p − 2,

V (r) ∩ (V (1) + · · ·+ V (r − 1) + V (r + 1) + · · ·+ V (p − 2)) = {0}.

▶ Set V := V (1)⊕ · · · ⊕ V (p − 2)
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‘Proof’ that IC ⊗ IC ∼= Z⊕ Λp−2
0

▶ Observe rkZ(V ) = p(p − 2) and so rkZ((I∗C ⊗ I∗C)/V ) = 1.

▶ By first showing (I∗C ⊗ I∗C)/V is torsion free, we have (I∗C ⊗ I∗C)/V ∼= Z.
▶ In particular, we can construct a useful basis.
▶ Consider the basis {ν i ⊗ ν j | 0 ≤ i, j ≤ p − 2} of I∗C ⊗ I∗C . By performing

elementary basis transformations, this can be replaced by the following basis:

{νr+k ⊗ νk | 1 ≤ r ≤ p − 2, 0 ≤ k ≤ p − 1} ∪ {T},

where

T = 1 ⊗ 1 + 1 ⊗ ν + 1 ⊗ ν2 + · · · + 1 ⊗ νp−2

+ ν ⊗ ν + ν ⊗ ν2 + · · · + ν ⊗ νp−2

+ ν2 ⊗ ν2 + · · · + ν2 ⊗ νp−2

. . .
...

+ νp−2 ⊗ νp−2.
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‘Proof’ that IC ⊗ IC ∼= Z⊕ Λp−2
0

▶ So (I∗C ⊗ I∗C)/V is generated by ♮(T ), where ♮ : I∗C ⊗ I∗C → (I∗C ⊗ I∗C)/V is the
natural surjection.

▶ Clear that T ∈ I∗C ⊗ I∗C but T ̸∈ V , and that Tx = T , thereby showing that x acts
trivially on (I∗C ⊗ I∗C)/V .

▶ Since x clearly acts trivially on Z, our isomorphism extends to one over Λ0, i.e.
(I∗C ⊗ I∗C)/V ∼=Λ0 Z.

▶ This gives the following short exact sequence,

0 → V → I∗C ⊗ I∗C → [♮(T )) → 0.

▶ By dualising and using the self-duality of V ∼= Λp−2
0 and [♮(T )) ∼= Z, the proof is

complete.
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Moving to dihedral groups

▶ Set Λ := Z[D2p], where p = 2n + 1 is an odd prime.
▶ Associated to Λ0 is the canonical injection i : Λ0 ↪→ Λ.
▶ From this we can induce two maps on the categories of finitely generated lattices,

▶ i∗ : F(Λ) → F(Λ0), given by restricting scalars to Λ0,
▶ i∗ : F(Λ0) → F(Λ), given by extending scalars; that is, i∗(M) = M ⊗Λ0 Λ.

▶ Similarly, we have the canonical injection j : Z[C2] ↪→ Λ and this too induces two
maps on the categories of finitely generated lattices.

▶ Both the restriction and extension of scalars functors have easily verified
properties. They are,
▶ additive,
▶ exact, and
▶ take free modules to free modules.
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Moving to dihedral groups

▶ The augmentation ideal of Λ will be denoted by IG, and the augmentation ideals of
Λ0 and Z[C2] will be denoted by IC and I2, respectively.

▶ By [α) we mean the right ideal generated by α; that is [α) = {αλ | λ ∈ Λ}.
▶ In particular, any ideal in Λ is a Λ-lattice.
▶ Set π := (xn − 1)(y − 1) and ρ̃ = (y − 1)(x − 1). We then define

P = [π), R = [ρ̃). (2)

▶ Write Σx = 1 + x + · · ·+ x2n, which we observe is central in Λ.
▶ The ideal [x − 1) decomposes as a direct sum [x − 1) = P ⊕ R.
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Why are P and R important?

▶ We saw that I∗C has a Z-basis, {νr | 0 ≤ r ≤ p − 2} where 1 + ν + · · ·+ νp−1 = 0.
▶ The action of Cp on I∗C may be extended in one of two ways to an action of the

dihedral group:
• Either: νr · y = ν−r = νp−r for 0 ≤ r ≤ p − 2;
• or: νr · y = −ν−r = −νp−r for 0 ≤ r ≤ p − 2.

▶ Under the former, we denote (I∗C)+, and under the latter we denote (I∗C)−.
▶ P ∼= (I∗C)− and R ∼= (I∗C)+.
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Why does this matter?

▶ The augmentation ideal IG decomposes as,

IG ∼= P ⊕ [y − 1)

▶ This has the effect of separating the x , y strands, in some sense.
▶ As such, we end up spending more time on P and R (along with two other

modules soon to be met).
▶ In particular, direct computation shows P ⊗ [y − 1) ∼= Λn.
▶ Note, P and R are not isomorphic as Λ-modules, nor even stably isomorphic.
▶ Nevertheless, P∗ ∼= R and R∗ ∼= P.
▶ Both [y − 1) and [y + 1) are self-dual, but are not isomorphic, as Λ-modules.
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Two more modules

▶ Define the modules K and L to be

K = [Σx , y − 1) and L = [Σx , y + 1). (3)

▶ Both K and L have Z-rank p + 1.
▶ Further, Λ/K ∼= R and Λ/L ∼= P.
▶ Finally, both K and L are self-dual; that is K ∗ ∼= K and L∗ ∼= L.

Spoiler for why these matter: D2p has cohomological free period 4 and we have
defined four modules: K , P, L, R.
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How the modules interact under tensor product

▶ K ⊗ R(i) ∼= R(i)⊕ Λn, for 1 ≤ i ≤ 2 where R(1) ∼= P and R(2) ∼= R;
▶ K ⊗ K (i) ∼= K (i)⊕ Λn+1, for 1 ≤ i ≤ 2 where K (1) = L and K (2) = K ;

▶ P ⊗ P ∼= L ⊕ Λn−1;
▶ P ⊗ L ∼= R ⊕ Λn;
▶ P ⊗ R ∼= K ⊕ Λn−1.

▶ [y − 1)⊗ [y − 1) ∼= [y + 1)⊕ Λn

▶ [y − 1)⊗ [y + 1) ∼= [y − 1)⊕ Λn
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Strategy for showing K acts as the identity

We show K⊗? ∼=?⊕ Λr for some r ≥ 0 and where ? = K , P, L, R.

▶ K has a Z-basis given by {(y − 1)x i | 0 ≤ i ≤ p − 1} ∪ {Σx}.
▶ Define K0 = spanZ{(y − 1), (y − 1)x , . . . , (y − 1)xp−1}.
▶ Then K/K0 is represented by the class of Σx .
▶ Observe Σx · x = Σx and Σx · y = (y − 1)Σx +Σx = Σx in K/K0.
▶ Thus, x and y act trivially on K/K0 and it is therefore isomorphic to Z.
▶ In particular, we have an exact sequence of the form

0 → K0 → K → Z → 0.

▶ As such, tensoring with any of the P, R, K or L yields the exact sequence

0 → K0⊗? → K⊗? →? → 0.
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Strategy for showing P ⊗ P ∼= L ⊕ Λn−1

▶ Recall, when looking at cyclic groups we showed

I∗C ⊗ I∗C ∼=Λ0 [T )⊕ V ,

where V = V (1)⊕ · · · ⊕ V (2n − 1) and

V (r) = spanZ{νr+k ⊗ νk | 0 ≤ k ≤ 2n}.

▶ We also introduced the y -action νr · y = −ν2n+1−r .
▶ {νr | 0 ≤ r ≤ 2n − 1} is a Z-basis for I∗C , and under this action (I∗C)− ∼= P. So, we

find the free part of V , showing that for r ≥ 2,

Vr = V (r) + V (2n + 1 − r) is a Λ-module, and Vr ∼= Λ.
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Strategy for showing P ⊗ P ∼= L ⊕ Λn−1

▶ This leaves us with [T ) + V (1) and V ′ = V (2) + · · ·+ V (2n − 1) ∼= Λn−1.
▶ We have a split short exact sequence,

0 → Λn−1 → (I∗C)− ⊗ (I∗C)− → ♮(T + V (1)) → 0.

where ♮ : (I∗C)− ⊗ (I∗C)− → ((I∗C)− ⊗ (I∗C)−)/V ′.
▶ L ∼= ♮(T + V (1)).



Forming a free resolution

▶ Recall, the augmentation ideal of Λ splits as IG ∼= P ⊕ [y − 1).
▶ We therefore have the short exact sequence,

0 → P ⊕ [y − 1) → Λ → Z → 0.

▶ Tensoring with P ⊕ [y − 1) gives us another short exact sequence,

0 → (P ⊕ [y − 1))⊗ (P ⊗ [y − 1)) → Λ2p−1 → P ⊕ [y − 1) → 0.

▶ Tidying up using the earlier computations, we get the following:

0 → L ⊕ [y + 1)⊕ Λ4n−1 → Λ4n+1 → P ⊕ [y − 1) → 0.
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A de-stabilization lemma

▶ A Λ-module M is n-coproective if Hk(M, Λ) = 0 for 1 ≤ k ≤ n.
▶ If M is a Λ-lattice, then it is 1-coprojective.

▶ Lemma: Let 0 → J ⊕ Q0
j→ Q1 → M → 0 be an exact sequence of Λ-mdoules in

which Q0, Q1 are projective. If M is 1-coprojective, then Q1/j(Q0) is projective.



Applying the de-stabilization lemma

▶ Return to

0 → L ⊕ [y + 1)⊕ Λ4n−1 i→ Λ4n+1 → P ⊕ [y − 1) → 0.

and alter as follows:

0 → L ⊕ [y + 1) → S → P ⊕ [y − 1) → 0.

where S = Λ4n+1/i(Λ4n−1).

▶ By the de-stabilization lemma, S must be projective.
▶ S also occurs in the exact sequence,

0 → Λ4n−1 → Λ4n+1 → S → 0.

▶ As this exact sequence splits, S is stably free of rank 2. However, over D2p all
stably free modules are free (Eichler).



Applying the de-stabilization lemma

▶ Return to

0 → L ⊕ [y + 1)⊕ Λ4n−1 i→ Λ4n+1 → P ⊕ [y − 1) → 0.

and alter as follows:

0 → L ⊕ [y + 1) → S → P ⊕ [y − 1) → 0.

where S = Λ4n+1/i(Λ4n−1).
▶ By the de-stabilization lemma, S must be projective.
▶ S also occurs in the exact sequence,

0 → Λ4n−1 → Λ4n+1 → S → 0.

▶ As this exact sequence splits, S is stably free of rank 2. However, over D2p all
stably free modules are free (Eichler).



Keep tensoring with IG

▶ This leaves us with the following exact sequence,

0 → L ⊕ [y + 1) → Λ2 → P ⊕ [y − 1) → 0.

▶ Now we repeat by tensoring with P ⊕ [y − 1) again:

0 → R ⊕ [y − 1) → Λ2 → L ⊕ [y + 1) → 0.

▶ And again:
0 → K ⊕ [y + 1) → Λ2 → R ⊕ [y − 1) → 0.

▶ And again
0 → P ⊕ [y − 1) → Λ2 → K ⊕ [y + 1) → 0.
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A free resolution...

Splicing together the exact sequences gives us a ‘diagonalised’ free resolution:

· · · Λ2 Λ2 Λ2 Λ2 Λ2 Λ2 Λ2 Z 0

P ⊕ [y − 1)R ⊕ [y − 1)P ⊕ [y − 1)

L ⊕ [y + 1)K ⊕ [y + 1)



...and the syzygies

Reading them off from the free resolution, we see that the syzygies are as follows:

Ωr (Z) =


[Z] = [K ]⊕ [y + 1], r ≡ 0 (mod 4);

[P]⊕ [y − 1], r ≡ 1 (mod 4);

[L]⊕ [y + 1], r ≡ 2 (mod 4);

[R]⊕ [y − 1], r ≡ 3 (mod 4).

▶ Notice the paradoxical nature of stable classes. Even though Z is an
indecomposable Λ-module, its stability class decomposes non-trivially.



Bringing this back to Wall’s D(2)-problem

▶ From its relationship to the Realization problem, the key is to understand the third
syzygy module Ω3(Z).

▶ In particular, we want each minimal module J ∈ Ω3(Z) to be geometrically
realizable and full.

▶ We have shown, (IC)+ ⊕ [y − 1) ∈ Ω3(Z) and it is in fact minimal.

▶ Question: Are there any other minimal modules?
▶ Answer: No!
▶ Question: Is this module geometrically realizable and full?
▶ Answer: Yes!
▶ This therefore offers us a proof that D2p does in fact have the D(2)-property.
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