Tensor products, *q*-characters and *R*-matrices for quantum toroidal algebras

Duncan Laurie

University of Edinburgh

April 2025

Overview

- Quantum groups $U_q(\mathfrak{s})$ definition; motivations; braid group action
- · Quantum affine algebras $U_q(\hat{\mathfrak{g}})$ two realizations
- · Quantum toroidal algebras $U_q(\mathfrak{g}_{tor})$ definition; motivations & successes; difficulties
- Key problem no tensor product \otimes on module category $\widehat{\mathcal{O}}$ for $U_q(\mathfrak{g}_{tor})!$
- · The road to a solution...
 - 1. braid group action on $U_q(\mathfrak{g}_{tor})$
 - 2. horizontal-vertical symmetries of $U_q(\mathfrak{g}_{tor})$
 - 3. new topological coproduct for $U_q(\mathfrak{g}_{tor})$
- · Outcomes well-defined ⊗ with nice properties; q-characters; R-matrices; transfer matrices

Further details can be found in arXiv:2503.08839 [L25]
(as well as arXiv:2304.06773 [L24a] and my thesis [L24b])

Setup

Cartan matrix
$$A = (a_{ij})_{i,j \in I}$$

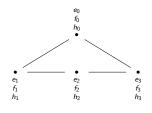
$$= Dynkin diagram$$

$$ie. vertices I and arrows$$

$$Kac-Moody Lie algebra \mathfrak{s}

$$generators e_i, f_i, h_i \ (i \in I)$$

$$relations given by arrows$$$$



Rough idea of relations:

- · Cartan subalgebra $\langle h_i \mid i \in I \rangle$
- · generators at non-adjacent vertices commute
- \cdot generators at adjacent vertices do not

Examples:

- · all finite dimensional (semi)simple Lie algebras g (+ve definite A)
- · all affine Lie algebras \hat{g} (+ve semidefinite A)

Quantum groups $U_q(\mathfrak{s})$

Defn: unique q-deformation of $U(\mathfrak{s})$ as a Hopf algebra

Motto: throw lots of q's into the definition of $U(\mathfrak{s})$, such that $U_q(\mathfrak{s}) \xrightarrow{q \to 1} U(\mathfrak{s})$

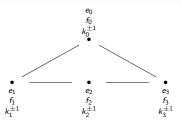
Quantum group $U_q(\mathfrak{s})$ Universal enveloping algebra $U(\mathfrak{s})$ $\begin{matrix} e_0 \\ f_0 \\ k_0^{\pm 1} \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\ h_0 \end{matrix} \qquad \end{matrix} \qquad \begin{matrix} e_0 \\ f_0 \\$

Example relation: $[e_i, f_j] = \delta_{ij} \frac{k_i - k_i^{-1}}{q - q^{-1}} \xrightarrow{q \longrightarrow 1} [e_i, f_j] = \delta_{ij} h_i$

Similarly: Cartan subalgebra $\langle k_i^{\pm 1} \rangle$ // generators at $i \not\sim j$ commute // generators at $i \sim j$ do not

Fundamental: Hopf algebra $w/coproduct \sim nice repn theory (& & duals), and much more ...$

Motivating quantum groups $U_q(\mathfrak{s})$



- Algebra. eg. finding nice bases for (repns of) s is hard, but for $U_q(\mathfrak{s})$ we have crystal & global & canonical bases
- Mathematical physics. eg. $R: V \otimes W \xrightarrow{\sim} W \otimes V$ as solutions to Yang-Baxter eqn
- Low dimensional topology. eg. various knot / link / 3-manifold invariants are computed using repns of quantum groups
- · Combinatorics. eg. combinatorial bases for repns of quantum groups (such as Young walls) connect to partitions, Macdonald polynomials, ...
- **Geometry.** $\widehat{U_q(s)} \to K^G(\ldots)$ connects quantum algebras with quiver varieties, Hilbert schemes, Kleinian singularities, ...
- · ... and so on ...

Fundamental result - braid group actions

Motto: quantization of Weyl group action $W \curvearrowright \mathfrak{s}$ on Kac-Moody Lie algebra

$$\mathcal{B} = \left\langle T_{i} \mid i \in I, \underbrace{T_{i}T_{j}T_{i}\dots}_{\#\{i-j\}+2} = \underbrace{T_{j}T_{i}T_{j}\dots}_{\#\{i-j\}+2} \right\rangle \qquad \curvearrowright \qquad U_{q}(\mathfrak{s}) = \left\langle e_{i}, f_{i}, k_{i}^{\pm 1} \mid i \in I, \dots \right\rangle$$

$$\downarrow 0$$

$$\uparrow 0$$

$$\downarrow 0$$

$$\uparrow 0$$

$$\downarrow 0$$

Rough idea: T_i intertwines generators at vertices $j \sim i$ with those at i

Extension: diagram automorphism group Ω acting via $\pi: e_i \mapsto e_{\pi(i)}$, $f_i \mapsto f_{\pi(i)}$, $k_i \mapsto k_{\pi(i)}$

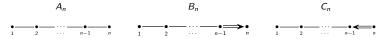
Applications:

- · root vectors and PBW-style bases for $U_q(\mathfrak{s})$ and $U_q(\mathfrak{s})_{\mathbb{Z}}$
- · crystal and global basis theories for repns of $U_q(\mathfrak{s})$
- · and more to come ...

The finite case

Motto: the simplest, most well-understood part of the story

Examples:

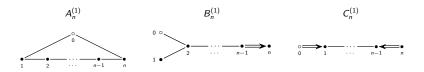


Recap:

$$egin{array}{cccc} oldsymbol{\mathfrak{g}} & \stackrel{\mathsf{equivalent to}}{\longleftrightarrow} & U(oldsymbol{\mathfrak{g}}) & \stackrel{q ext{-deformation}}{\longleftrightarrow} & U_q(oldsymbol{\mathfrak{g}}) \\ & & & & & & & & \\ \mathcal{W} & & & & & & & \mathcal{B} \end{array}$$

The affine case

- · simplest ∞-dim Kac-Moody Lie algebras, next most complicated after f.d. semisimple case
- · classified by explicit list of Dynkin diagrams
- · all occur as finite A_n-G_2 Dynkin diagrams with an extra 0 vertex added in a particular way, eg.



Note: in this talk we restrict to untwisted types - the twisted case is rather different!

Two realizations for affine objects

Motto: objects on the affine level usually have two realizations ...

"object associated to affine Dynkin diagram" vs "affinization of corresponding finite object"

Example: affine Lie algebras \hat{g} arise from affine Dynkin diagrams, or:

 $\text{f.d. simple Lie algebra } \mathfrak{g} \\ & \qquad \qquad \\ \text{loop Lie algebra } \mathfrak{g}[t,t^{-1}] \\ & \stackrel{\mathsf{central extension}}{\longleftarrow} \mathfrak{g}[t,t^{-1}] \oplus \mathbb{C} c \\ \\ \text{f.d. simple Lie algebra } \mathfrak{g} \\ \text{f.d. simple Lie algebra } \mathfrak{g} \\ \text{f.d. simple Lie algebra } \mathfrak{g}[t,t^{-1}] \\ \text{f.d. simple Lie algebra } \mathfrak{g}[t,t$

$$\begin{array}{c} \vdots & \vdots & \vdots \\ e_1t^1 & f_1t^1 & h_1t^1 & \cdots & e_nt^1 & f_nt^1 & h_nt^1 \\ e_1t^0 & f_1t^0 & h_1t^0 & \cdots & e_nt^0 & f_nt^0 & h_nt^0 \\ e_1t^{-1} f_1t^{-1} h_1t^{-1} & \cdots & e_nt^{-1} f_nt^{-1} h_nt^{-1} \\ \vdots & c & \vdots \end{array}$$

 $\textbf{Note:} \ \ \text{similar "loop style" realizations exist for braid groups, Hecke algebras, quantum groups \dots }$

Two presentations for affine quantum groups

Drinfeld-Jimbo realization

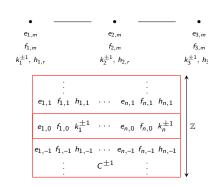
q-deformation of $U(\hat{\mathfrak{g}})$

Motto: "quantum group of the affine Lie algebra"

Drinfeld new realization

"(quantum) affinization of the finite quantum group"

q-deformation of $U(\mathfrak{q}[t, t^{-1}] \oplus \mathbb{C}c)$



finite dimensional repns, vertex repns, ...

Uses: coproducts, highest weight theory, nice bases, ...

Affine braid group action

Affine braid group

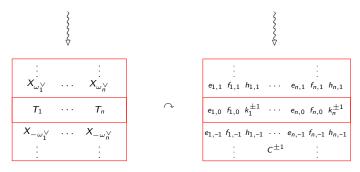
Affine quantum group

 Ω T_0 T_1 \cdots T_n

$$\begin{bmatrix} e_0 \ f_0 \ k_0^{\pm 1} \end{bmatrix} \begin{bmatrix} e_1 \ f_1 \ k_1^{\pm 1} & \cdots & e_n \ f_n \ k_n^{\pm 1} \end{bmatrix}$$

Motto: T_i intertwines generators at vertices $j \sim i$ with those at i

 \cdot $\pi \in \Omega$ permutes generators around the affine Dynkin diagram



Motto: X_{β} shifts generators up & down \mathbb{Z} -grading

Quantum toroidal algebras $U_q(\mathfrak{g}_{tor})$

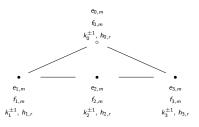
Motto:

- · the double affine objects within the quantum setting
- · quantize the toroidal Lie algebras $\mathfrak{g}[s^{\pm 1},t^{\pm 1}]\oplus \mathbb{C} c_s\oplus \mathbb{C} c_t$

Construction:

- · combine the two realizations for the quantum affine algebra
- · specifically, index Drinfeld new presentation over affine Dynkin diagram

	:		\mathcal{U}_{v}	:				:	
e _{0,1}	$f_{0,1}$	$h_{0,1}$	$e_{1,1}$	$f_{1,1}$	$h_{1,1}$		$e_{n,1}$	$f_{n,1}$	$h_{n,1}$
$e_{0,0}$	f _{0,0}	$k_0^{\pm 1}$	$e_{1,0}$	f _{1,0}	$k_1^{\pm 1}$		e _{n,0}	$f_{n,0}$	$k_n^{\pm 1}$
e _{0,-1}	$f_{0,-1}$	$h_{0,-1}$	$e_{1,-1}$	$f_{1,-1}$	$h_{1,-1}$		$e_{n,-1}$	$f_{n,-1}$	$h_{n,-1}$
	:			:		$C^{\pm 1}$:	



Fundamental:

- · horizontal and vertical quantum affine subalgebras \mathcal{U}_h and \mathcal{U}_v generate $U_q(\mathfrak{g}_{tor})$
- · but ... not quantum groups!

Motivations and connections

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\vdots \\ \cdots e_{n,1} f_{n,1} h_{n,1}$
		\cdots $e_{n,0}$ $f_{n,0}$ $k_n^{\pm 1}$
e _{0,-1} f _{0,-1} h _{0,-1}	$e_{1,-1} f_{1,-1} h_{1,-1}$	$ \begin{array}{cccc} & & e_{n,-1} & f_{n,-1} & h_{n,-1} \\ C^{\pm 1} & & & \vdots \end{array} $

- © toroidal Schur-Weyl duality with double affine Hecke algebra (DAHA) in type A
- \circ $U_q(\mathfrak{g}_{\mathrm{tor}}) \longrightarrow K^{\mathsf{G}}(\text{quiver varieties \& Hilbert schemes of Kleinian singularities})$
 - provides powerful geometric approach to repn theory
 - provides powerful algebraic approach to (enumerative) geometry
- and many more ...

Difficulties

Crucially, quantum toroidal algebras are not quantum groups! So ...

- $^{\odot}$ no nice basis theories for $U_q(\mathfrak{g}_{\mathrm{tor}})$ or its repns properly developed yet
- \odot no coproducts or Hopf algebra structures known for $U_q(\mathfrak{g}_{\mathrm{tor}})$

best we have is topological coproduct
$$\Delta: U_q(\mathfrak{g}_{\mathrm{tor}}) \to U_q(\mathfrak{g}_{\mathrm{tor}}) \widehat{\otimes} U_q(\mathfrak{g}_{\mathrm{tor}})$$

but this has infiniteness & convergence issues with producing \otimes of repns in general ...

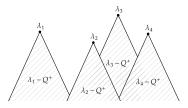
Duncan Laurie

¹except in types $A_1^{(1)}$ and $A_2^{(1)}$ [JZ22]

Representation theory - a problem

Definition: category $\widehat{\mathcal{O}}$ of $U_q(\mathfrak{g}_{tor})$ -modules whose restrictions to \mathcal{U}_h lie inside \mathcal{O} , ie.

- 1. all $e_{i,0}$ and $f_{i,0}$ act locally nilpotently
- 2. decompose as a direct sum of finite dimensional weight spaces w.r.t $\langle k_0^{\pm 1}, \dots, k_n^{\pm 1} \rangle$
- 3. weights lie inside a finite union of cones



Motto:

- · nice & important category $\widehat{\mathcal{O}}$ of integrable representations
- · toroidal analogue of finite dimensional modules for quantum affine algebras

Problem: no tensor product \otimes exists for category $\widehat{\mathcal{O}} \otimes ... why?$

Representation theory - a problem

Problem: topological coproduct Δ $\xrightarrow[]{\text{nope!}}$ \otimes on category $\widehat{\mathcal{O}}$ \odot

Motto: both Δ and repns in $\widehat{\mathcal{O}}$ are *vertically infinite*, eg.

$$e_{i,0} \, \stackrel{\Delta}{\longrightarrow} \, \textstyle \sum_{k \leq 0} \alpha_k \otimes e_{i,k} \qquad \text{\&} \qquad \text{all } e_{i,k} \cdot v \neq 0 \text{ possible}$$

Game plan [L24a,L24b,L25]²:

- 1. (extended) double affine braid group action $\ddot{\mathcal{B}} \curvearrowright U_q(\mathfrak{g}_{\mathrm{tor}})$
- 2. duality involution $\mathfrak t$ of $\ddot{\mathcal B}$ $\xrightarrow[]{\text{pass across action}}$ anti-involution ψ of $U_q(\mathfrak g_{\mathrm{tor}})$ swapping $\mathcal U_h \leftrightarrow \mathcal U_V$
- 3. horizontally infinite topological coproduct $\Delta^{\psi} = (\psi \otimes \psi) \circ \Delta \circ \psi$

²Note: $U_q(\mathfrak{sl}_{n+1,\text{tor}})$ originally investigated by Miki

Toroidal braid group action

(Extended) double affine braid group $\ddot{\mathcal{B}}$:

- · combine both realizations of (extended) affine braid group $\dot{\mathcal{B}}$
- · braid group analogue of definition for $U_q(\mathfrak{g}_{tor})$ in quantum setting

Theorem [L24a]: $\ddot{\mathcal{B}}$ acts on $U_q(\mathfrak{g}_{\mathrm{tor}})$ in all types

Ë	\mathcal{B}_{v}	:
	$X_{\omega_1^{\vee}}$	 $X_{\omega_n^{\vee}}$
\mathcal{B}_h Ω T_0	<i>T</i> ₁	 T_n
	$X_{-\omega_1^{\vee}}$	 $X_{-\omega_n^{\vee}}$
	:	:

Rough idea: combine both realizations of affine action $\dot{\mathcal{B}} \curvearrowright U_q(\hat{\mathfrak{g}})$

Key lemma: a finite presentation for $U_q(\mathfrak{g}_{tor})$

Horizontal-vertical symmetries

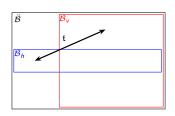
Goal: find (anti-)automorphisms of $U_q(\mathfrak{g}_{tor})$ that swap \mathcal{U}_h and \mathcal{U}_v – surprising!

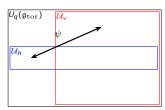
Why: only previous example (Miki automorphism in type A) fundamental for studying $U_q(\mathfrak{sl}_{n+1,\text{tor}})$

Theorem [L24a,L24b,L25]: There exists an anti-involution ψ of $U_q(\mathfrak{g}_{tor})$ swapping $\mathcal{U}_h \leftrightarrow \mathcal{U}_v$ in all types

Proof idea:

- · consider 'duality involution' $\mathfrak t$ of $\ddot{\mathcal B}$ that swaps $\mathcal B_h$ and $\mathcal B_v$
- · pass it across $\ddot{\mathcal{B}} \curvearrowright U_q(\mathfrak{g}_{tor})$ to obtain $\psi = (b \cdot x \mapsto \mathfrak{t}(b) \cdot x$ for all $b \in \ddot{\mathcal{B}}, x \in \mathcal{U}_h \cap \mathcal{U}_v)$





Corollary [L24b]: modular / congruence group action $\widetilde{SL_2(\mathbb{Z})} \curvearrowright U_q(\mathfrak{g}_{tor})$

Representation theory of $U_q(\mathfrak{g}_{tor})$ – a solution

Problem: topological coproduct Δ $\begin{tabular}{ll} \begin{tabular}{ll} \begin{$

Solution [L25]: *horizontally infinite* topological coproduct $\Delta^{\psi} = (\psi \otimes \psi) \circ \Delta \circ \psi$

- \odot produces well-defined \otimes and monoidal structure on $\widehat{\mathcal{O}}$, hence ring structure on $K(\widehat{\mathcal{O}})$
- ◎ ⊗ of irreducibles is generically irreducible (w.r.t. spectral parameter)
- \odot compatibility with Drinfeld polys that classify irreducibles: $\mathcal{P}(V \otimes W) = \mathcal{P}(V) \cdot \mathcal{P}(W)$
- $\widehat{\mathcal{O}}$ in some sense generated by n+1 fundamental modules

q-characters, *R*-matrices and transfer matrices

q-characters: $\chi_q: K(\widehat{\mathcal{O}}) \to \mathcal{Y}$ injective group homomorphism, combinatorial approach to $\widehat{\mathcal{O}}$

Theorem [L25]: χ_q is a ring homomorphism, ie. $\chi_q(V \otimes W) = \chi_q(V) \cdot \chi_q(W)$

R-matrices: intertwining morphisms $\mathcal{R}:V\otimes W\to W\otimes V$ satisfying Yang-Baxter equation



Theorem [L25]³: There exist unique rational functions $\mathcal{R}_{V,W}(x): V \otimes W \to W \otimes V$ such that homomorphism except at poles // isomorphism generically // (trig. q-) YBE satisfied

Corollary: commutative family of transfer matrices $\{\mathcal{T}_{V,W}(x) \mid W\} \subset \operatorname{End}(V)(x)$

³ for now, V, W are $\bigoplus \bigotimes$ irreducibles here

Future directions

