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Motivation
@000

Observables in Flat Space

Scattering is one of the simplest process one can study in QFT and QG and
allows us to quantify certain observables in flat space.

For example: Scattering amplitudes, which are directly related to physical
observables (Cross Sections) that are measurable in experiments.

To obtain the measurable cross-section we compute “S-matrix2”

g~ /dwout <¢in|slwout> <¢out‘5|win>

Usually observables are computed using in-in correlators, including curved space
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Typical approach to computing observables — First compute a S-matrix and then
integrate it

These are usually evaluated via Feynman Diagrams in momentum space

g2

p _p2+m2

These involve off-shell particles and has spurious poles in intermediate steps,
involves very heavy algebra.

Even in flat space the full computation becomes very hard very soon




Motivation
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Very stark in spinning theories. Eg: In Gravity, the 4-point function has 2000+

terms

However many cancellations occur and the final expressions are simple. To quote
DeWitt (1967) on the 2—2 graviton scattering computation:

quanta, eliminate many of the terms from these ex-
pressions. Nevertheless, a large amount of cancellation
between terms still has to be dug out of the algebra,
and this, combined with the fact that the final results
are ridiculously simple, leads one to believe that there
must be an easier way. The cross sections which one
finds are

Similar quote in Parke-Taylor in 1986!

This “easier way" known as the BCFW recursion was developed in the early
2000's and eventually led to a lot more developments and the “Amplitudes

program”

Take Home Message: Final answers are often easier than building blocks
— Often require special choice of helicities, masses, etc.
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Moving Forward

How hard is it to compute such in-in correlators in curved space?
Can we directly obtain this observable without computing the “amplitude”?

One such example: Equal time in-in correlators,
(W|O(t =0,x1)--- O(t =0, %,)|V)

where O’s are operators at a time slice. In our universe (= FRW) these are
cosmological correlators and related to measurements.

These often form examples of Schwinger-Keldysh correlators

Ground state |W) (wave function of the universe) are related to AdS correlators

via analytic continuation.




Conventions
[

Conventions

Will mainly work in dSq,

—dt? + dx? 1
CI52 e # EES

12 VTET
The correlation functions are evaluated at t = 0,

(W|O(t =0,%1)--- O(t =0, %)|V)
Since there is translational invariance along X, momentum K is defined by

O(t = 0,%) = /d3k e*%0(t = 0, K)

“Energy” = |k| = /k2 + k2 + k2

=
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Correlators-Intro
o

Correlator ~ |W|?

The in-in correlator is defined as
(Wlo(k) -+ s(k)IW) = [ Doo() -+ s(k) ()P
What is the state W(¢)? The most popular choice is the
Hartle-Hawking/Bunch-Davies state,
¢ (t=0,%)=¢(X) .
Vo) = [ D &Sl7)
P(t=—00)=0
— By analytical continuation, these are equivalent to computing correlators in AdS [Valdacena]

The wave functions W(¢) are computed using path integrals and perturbation
theory is expressed in terms of Witten diagrams.

These correlators can also be computed via Schwinger-Keldysh formalism [weinbers

— Also related to Shadow prescription [Sicight, Tarrona]  [Di Pietro, Komatsu, Gorbenko




Wave Function
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Wave Function

A lot of attention has been given to compute the wave function as it is the
building block

Lots of good intuition from AdS/CFT as it is related to the AdS correlators

[Maldacena, Pimentel; McFadden, Skenderis; Ghosh, Kundu, Raju, Trivedi]

Good motivations to do so as even in flat space we usually compute the (out|in)
correlator first: S-matrix

Standard intuition suggests that the building blocks are simpler than final object

We will first review W as its conceptually simpler and show some examples where
the correlator is nicer and a direct connection with amplitudes




Wave Function
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Harmonic Oscillator: Gaussian Wave Function

We defined the ground state wave function via path integral
»(0)=¢ s
v - [ Dye'
p(—00)=0
However they also satisfy Schrodinger Equation
HV =0
For example: Ground state wave function for Harmonic Oscillator

d2 2.2
= pe T

w?x?

= Y(x)= e}

Similarly for a free scalar field in flat space you integrate over all oscillator modes

8? SR P S
H= [ dhg o +udoge_; = Vg = H i
K 9Y_k

Would obtain the same result from e ™ 2on—shell
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Wave Function
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Higher order corrections are evaluated perturbatively:
Either by (Hpee + Hint) |¥0) =0 or by solving the path integral

Generic structure is of the form:
V] ~ exp [/d3k1d3k2 Vo (ki ko) p(ki)p(ka)
b [ @ da Val ) (k) (k) + ]

— \U,,(I?l, e 7I?,,) are called Wave function coefficients and by analytical
continutation, related to AdS correlators.

Often known as Old Fashioned Perturbation Theory and is clearly non-covariant
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Wave Function
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Witten Diagrams

Perturbation theory can be expressed in terms of Witten Diagrams

No time-translation invariance

Bulk-Boundary & Bulk-Bulk Propagators.
Example: for Wy in ¢* and ¢3 theory:

Momentum conservation along spatial directions only.




Wave Function
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Example of a Witten diagram

Consider Conformally Coupled scalar field.

— Related to massless scalar fields in flat space via Weyl Transformation.

Propagators are (Notation: k = |k|)

be(ti k) = te™,

oy tt! I _ik(t—t") ’ ik(t' —t) ik(t+t")
G(t7t,k)7ﬂ[0(t—t)e +6(t" —t)e —eBC ]

Feynman

Satisfies Dirichlet boundary conditions hence not translational inv.

Example: Contribution to tree-level v in ¢* theory,

- ; :/0 dtef(k1+~-+k4)t/d3xefz,i,-.;: S(ky+ -+ ka)
' ) —o ki + ko + k3 + ka4
| S

spatial mom cons.

— Time integrals are cut-off at t = 0 (Need correct ie prescriptions at n — —00)
— Hence instead of getting 6(k1 + ko + k3 + ka) we get a poles
(ki + ko + k3 + ka) ™11 (related to flat space limits )
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Wave Function
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Exchange Diagram:

Consider an exchange diagram in ¢* theory: (k = |k + Ky + k3| and Kijm = |K:| + K| + |Km)

0
= / dtidty efk123ts glkase t2 G(tl, to, k)
k= I:l + 1:2 + E3 -

1
(K123 + kase) (k + k123)(k + kase)
1
= —————Wy(k, ki, ko, k3)W3(k, ka, ks, ks) = Product of Lower Point ¥

(k123 + kase)

No energy conservation
These poles have a physical meaning (eg: flat space limit [raju] )

Recursive formulas via IBP  [arni-Hamed, Benincasa, Postniker] — including spinning theories

[Albayrak, CC, Kharel; CC, Chowdhury, Moga, Singh]




Wave Function
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Exchange Diagram: ¢3

Consider an exchange diagram in ¢ theory: (k = |k + k| and ki = |Ki| + |K;])

ka P Ky
_ / dt1dtz it o)t ks Tk G (11, £, Ky + o)
Rtk s (1)
Computing the time integrals gives [Arni-Hamed, Maldacena]
. . w’
V= ——— [le(l — u) + Li2(1 — v) + log(u) log(v) — —]
l1—u—v 6
_ _kio+k _ _ksa+k
where u = kiotksa' 7 T kiotksa

[Drummond, Henn, Trnka] WIP with S. Prabhu and P. Raman]

Exactly equal to 7-pt pentagon!
1

Vy= ———
¢ l—u—v

Hence already see dS at tree level ~ Loops in Amplitudes




Correlator
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Correlator

Notice that we still need the correlator (upto overall factors)
(W[ pal VW)
= [ D661 gseRev)

— [ D6 61+ 4em IR (14 [ ReWaingnon + [ ReWatnsadavs

+3 [ Revasions [Rewasigsos +--)

Re\U3 Re\ll3

~ ReW
Vit T Rew,

For higher loops/points expression gets more complicated [senincass, Dian] , €g.,

ﬁ . wﬁ”wi“wﬁ” N d&(;l)lllél) N w£1)w£2) N 1115(;1)
P2 Apohothas  2atbathe 29htpa P2t

Claim: the final sum of the RHS is much simpler than inital expectations [cc

(1 da)® =¥ +

Lipstein, Mei, Sachs, Vanhove]  [also see recent work by Glew]
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Difficulty
(]

Status

Scalar trees are often difficult and in general lot of connections left to uncover.

=

Only explicit loop integrals done now are mostly axi-symmetric (bubbles,

o]

necklace, banana)

No MHV type computation beyond 4 points even in Yang-Mills

Three different expressions of 4-graviton correlator and not obvious how they are
related to each other

Most computations are for the wave functions but we eventually need in-in
correlators.

@A In the next few slides | will describe a new representation for the in-in correlator

expressed in terms of flat space Feynman diagrams




Dressing Rule
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Wave functions

To keep things simple we revisit CC scalars with ¢* interaction and consider a
single exchange

This is equivalent to a 6-pt function s,
e = /Oo dty diye¥12311 g~ kass 12 1 {eue—kﬁz 4+ @ye k1 _ e—k(fﬁtz)]
2k
0

o dpsin(pty) sin(ptz)
oo p? + k2

o dpp’ 1 -
= S5 T o Py = (p, k)
/—oo (P? + k2y5)(P? + kisg) P? }

where | simply interchanged order of integration and performed integrals over ty, to.

o —kin3t1 —kasgt
_ / dty dipe k12311 g~ kass 2
0

Looks like an energy integral over a flat space amplitude

However, does not work in the same way for loops and higher points

Still need to compute correlator by adding ¥,'s
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Correlator

However there exists a similar representation for the in-in correlator too

W _ ahs 1 1
e = e + = +
(r--- o) e [ (k123 + kase)(ki2s + k)(kass + k) k(kios + k)(kase + k)
oo k123 kase 1 P
= dp ——, P, = (p, k
[w (P? + k3p3)(P? + ki) P? w=(pok)

Comparing to wave function, the only difference is the factor in numerator

However, for the in-in correlator this Kernel works at arbitrary points and loops.

Example: at one loop we have, [cc Lipstein, Mei, Sachs, Vanhove

@ °°d k12kaa /
(G1---4) /,m P+ IR T ) LZ(L+P

The Kernel is generally theory dependent

In contrast to a Celestial Amplitude, this integral is on a single Feynman diagram
(and not full amplitude)




Dressing Rule
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Correlator

Hence the following representation is true at 4-pts for a class of diagrams,

o aa = [ e SO SO ]

where the Kernel is written for the s-channel.
Note: Energy conservation exists for the flat space amplitude.

Different channels/topologies have a different kernel's depending on the external
momenta. Example: t-channel’'s Kernel

B L) Y A dpka1 ka3 o
(1 / (P2 + K3)(P? + KZy) [Q * ]

Natural generalization to higher points
Example: Triangle Diagram,

(1 >(5 _ /DO dp1dp2ki2ksakse / d*L
° —oo (P} + KH) (P2 + K2) ((pr + P2)? + KZ5) J L2(L2 + P1)2(L+ Py)?
Not IR/UV divergent.
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Dressing Rule
[e]e]e] )

Rule: Take a Feynman graph, integrate over energies upon multiplying with a
Kernel — gives a cosmological correlator.

— will refer to Kernel as Auxiliary Propagators

Diagrammatically,

o dp kiok d*L
e dg)®) = — p Ki2k34 /
1o dw) | e )P i) ] BT ee

where P = (p, E) & the red lines denote the 1-D propagators, carrying energy
Example: Triangle

(1 b6)) =

/°° dp1dpz k12 ks kse / d*L
—oo (P + k%) (PF + k3,) (P + p2)? + k) S L2(L2 + P1)2(L + P2)?

andramoull ury

Cosmological Graphs from Scatte Amplitudes



Applications
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Higher Masses

There are a concrete set of dressing rules worked out for the CC and massless

theories with polynomial interations [cc, A Lipstein, J. Marshall, J. Mei, I. Sachs]
CC scalar: ¢* interaction [closely tied to in-out formalism [Donath, Pajer]
- kext
Auxiliary Propagators :  A(kext, p) = -
ke + P?

CC scalar: ¢3 interaction,

o0
1 2
AE@L = /0 dsA(p, k + s), AE(,L =7
Example, for tree level massless scalars, [t appear with A Lipstein, ). Marshall, ). Zhang]

oS} d52
Amassless(kh k2: P) - 8k18k2 / @(1 — Pap)A(k12 + s, p)
0

— Gives the IR regularized correlator

Almost similar dressing formulas work for spinning theories [i appear ]




Applications
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Loops: Simplicity

The dressing rule also leads to simplification at loop level

Normally one can compute in-in loops by first computing wave function
trees/loops and then squaring (or using SK). For example,

vy oyl
. @ _ @ 4 T4 6
(oo =ity 200y oy

where

() _
v, =

(1) — (1) _
s = =

Individually these compute AdS corelators. In particular, consider \Uftz),

1 k3qs — k ki — k k + k: k + k:
L S (3“7> + log? < 12 ) gLt o ke e
kio + k3 € k + k12 k 4 k34 k — k12 k — k3a
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Applications
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Loops: Simplicity & Transcendentality

Example: However the final correlator is a log
R kiok3q / d*L
... - d
(d’l ¢4> /_oc P(p2 T k122)(p2 ¥ k§4) L2(L+ K)2
/°° d ki2ksa | PP+ K
~ p og
—oo (PP KGR+ Ky) A2
k k) (k: k k k: k k
_ ™ [log<(12+ )(234+ )>+ 12 + 34|n<34+ )]
k12 + kza A k12 — kaa kia + k

Preserving conformal invariance requires a careful regularization
(also see recent work by )

T (ki2 + k) (ksa + k)H? k12 + kaa kas + k
(¢1---¢a) = og > > In
k1o + kaq N2(kip + k3a) k12 — kaa ki2 + k

— The new branch log(ki> + k34)2 also predicted by loop intrgral space limit
Example shows how the transcendentality drops.

While the dressing rule is not needed, it makes it easier to see why it happens.
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Applications
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Loops: Bubble

From the dressing rule we get an integral of kind,

o dp 2 2
ﬁwmlog(fv +b°) ~ mlog

In the complex p plane,

i : / dp = Res + / s / = / . P _
ia — oo p=ia disc disc b Pt a

Same conclusion for any Li, insertion. For this class of integrals, we can easily
write this as a Polylog recursion by partial fractions

However things start getting more complicated when we encounter v/p? + c2,

oo d Lio(- - -
Examples: / I — Iog(p2 + bz) ~ Lip, Triangle/Box ~ 2 )

—co (P2 + a2)\/p? + 2 A(p1,s P2, P3)

Discontinuity across a sqg-root branch cut is still sg-root




Applications
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Loops: Triangle

For special 1-loop polygons simplicity is explained by the pole structure of the
fd3/ integrand [cc, Chowdhury, Moga, Singh]  [Benincasa, Brunello, Mandal, Mastrolia, Vazao]

/d Lfl, )= /d3l/ dLof(Lo, 1) /d3/f(/)

Since (- --) comes from W they share many poles but differ in one e

. L (e cims : 1
At 1-loop: (---) has 7 (is similar to an S-matrix pole), whereas W has Eodl
Example:
For tadpole,
d’l dl
7~klok vs <...>;/7~,2
I+2 i
For the bubble:
/ dl .
v —— —— ~ Lis
(kiz + 1+ |1+ k|)(ksa + | + |I 4+ k|) (ki + ksa + 1)
dl
vs [CER) I — ~ log

(kia + 1+ [T+ k|)(ksa + 1 + |T+ K|)!
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Applications
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Loops: Triangle

Non-trivial example: Triangle diagram: no analytical expression exists yet

The wave function coefficients contains this pole,
J :
(k2 + kaa + kse + 21)(kia 4+ 1 4+ 1")(ksa + 1+ 1" )(kss + 1" + ") (k12 + ksa + 14+ 1")

The master integrals were argued to be Elliptic using differential equations

Combing previous argument with this, correlator is expected to be
Polylogarithmic,

1
a1
/ (N(kia + 1+ 1")(ksa + 1+ 1")(kse + 1" + ") (k12 + kza + 1+ 1")

Consistent with dressing rule as square-roots contain quadratic polynomials

However this argument does not fix order of the Polylog

Can hope to employ a strategy similar to flat space, where you consider cuts of a
diagram
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Applications
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Cuts and Discs.

Correlator = Flat space diagram + Extra 1D propagators,

d dp kiokss
B(ki, ksa) = =
(12 34) >@< Lw(p2+k 2+k34),/L2L+P

Hence you can consider cuts and set things on-shell [w appear €C. S Jazayeri, A Lipstein, J

Marshall, J. Mei, |. Sachs
Can relate to disc. [Cutkosky: tHooft, Veltman] , sequential disc., etc.  [Bourjaily, Hannesdotti

McLeod, Schwartz, Vergu]  [Benincasa, McLeod, Vergu]

Cuts of auxiliary propagators are relatively simple.

— Similar to mass cuts in amplitudes

Cutting all auxiliary propagtors recovers the flat space limit (including energy

conserving delta function).

oo
@ [ et + it + ) /LZ(L+P)2 = ok ~ o) /L?(L+P)2
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Applications
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Sum Rules

Further, away from the plane ki» = k3s, we get new constraints via relating the
cus with discontinuities

disc 2 f(x°) = F(x* + ie) — F(x° — ie)

Predicts new Sum Rules for the correlator via sequential disc.,
B(ki2, k3a) + B(k12, —k3a) + B(—ki2, k3a) + B(—ki2, —k3s) =0

— Extends to higher pt/loop diagrams (more relations via partial energy sum rules).

— Also noted for contact graphs in [Donath, Pajer]

No such rule is applicable to wave functions!

— Flat Space Limit/Partial Energy Singularities for 1) can't be written as sequential Disc.
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Conclusion

Obtained an integral representation for in-in correlators in terms of flat space
Feynman diagrams for some theories.

o)

New connections between Amplitudes and Cosmological Graphs

Integral representations gives new constraints for correlator, loops, etc.
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Future Directions

10}

Sum of channels via BCFW, similar to AdS ?

Generalization to FRW, connection with kinematic flow?

How sensitive is this story to Bunch-Davies, eg: any similar structure for
correlators in ae—vaccua?

What can we learn about UV properites of correlators and wave functions/BPHZ
in dS?

Does this structure sustain after Renormalization, both UV and IR

?
How to handle higher masses ? Can one exploit the tools
developed for the wave function ?
Lessons from previous cutting rules/tree theorems ?
Do similar dressing formulas exist for OTOC like asymptotic observables in flat
space ?
Other correlators (1|¢m - - - [1) and unequal time correlators ?
Resumming graphs ?
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