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Observables in Flat Space

1 Scattering is one of the simplest process one can study in QFT and QG and

allows us to quantify certain observables in flat space.

2 For example: Scattering amplitudes, which are directly related to physical

observables (Cross Sections) that are measurable in experiments.

3 To obtain the measurable cross-section we compute “S-matrix2”

σ ∼
∫

dψout ⟨ψin|S |ψout⟩ ⟨ψout|S |ψin⟩

4 Usually observables are computed using in-in correlators, including curved space
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1 Typical approach to computing observables – First compute a S-matrix and then

integrate it

2 These are usually evaluated via Feynman Diagrams in momentum space

p
=

g2

p2 +m2

3 These involve off-shell particles and has spurious poles in intermediate steps,

involves very heavy algebra.

4 Even in flat space the full computation becomes very hard very soon
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1 Very stark in spinning theories. Eg: In Gravity, the 4-point function has 2000+

terms [DeWitt]

2 However many cancellations occur and the final expressions are simple. To quote

DeWitt (1967) on the 2→2 graviton scattering computation:

3 Similar quote in Parke-Taylor in 1986!

4 This “easier way” known as the BCFW recursion was developed in the early

2000’s and eventually led to a lot more developments and the “Amplitudes

program”

5 Take Home Message: Final answers are often easier than building blocks

– Often require special choice of helicities, masses, etc.

Chandramouli Chowdhury Uni of Southampton

Cosmological Graphs from Scattering Amplitudes



Motivation Conventions Correlators-Intro Wave Function Correlator Difficulty Dressing Rule Applications Conclusion

Moving Forward

1 How hard is it to compute such in-in correlators in curved space?

2 Can we directly obtain this observable without computing the “amplitude”?

3 One such example: Equal time in-in correlators,

⟨Ψ|O(t = 0, x⃗1) · · ·O(t = 0, x⃗n)|Ψ⟩

where O’s are operators at a time slice. In our universe (≈ FRW) these are

cosmological correlators and related to measurements.

4 These often form examples of Schwinger-Keldysh correlators

5 Ground state |Ψ⟩ (wave function of the universe) are related to AdS correlators

via analytic continuation.
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Conventions

1 Will mainly work in dS4,

ds2 =
−dt2 + dx⃗2

t2
=⇒

√
−g =

1

t4

2 The correlation functions are evaluated at t = 0,

⟨Ψ|O(t = 0, x⃗1) · · ·O(t = 0, x⃗n)|Ψ⟩

3 Since there is translational invariance along x⃗ , momentum k⃗ is defined by

O(t = 0, x⃗) =

∫
d3k e i k⃗ ·⃗xO(t = 0, k⃗)

4 “Energy” = |k⃗| =
√

k2
x + k2

y + k2
z
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Correlator ∼ |Ψ|2

1 The in-in correlator is defined as

⟨Ψ|ϕ(k⃗1) · · ·ϕ(k⃗n)|Ψ⟩ =
∫

Dϕϕ(k⃗1) · · ·ϕ(k⃗n)|Ψ(ϕ)|2

2 What is the state Ψ(ϕ)? The most popular choice is the

Hartle-Hawking/Bunch-Davies state,

Ψ[φ(x⃗)] =

∫ ϕ(t=0,⃗x)=φ(⃗x)

ϕ(t=−∞)=0
Dϕ e iS[ϕ]

– By analytical continuation, these are equivalent to computing correlators in AdS [Maldacena]

3 The wave functions Ψ(ϕ) are computed using path integrals and perturbation

theory is expressed in terms of Witten diagrams.

4 These correlators can also be computed via Schwinger-Keldysh formalism [Weinberg]

– Also related to Shadow prescription [Sleight, Tarrona] [Di Pietro, Komatsu, Gorbenko]
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Wave Function

1 A lot of attention has been given to compute the wave function as it is the

building block

2 Lots of good intuition from AdS/CFT as it is related to the AdS correlators

[Maldacena, Pimentel; McFadden, Skenderis; Ghosh, Kundu, Raju, Trivedi]

3 Good motivations to do so as even in flat space we usually compute the ⟨out|in⟩
correlator first: S-matrix

4 Standard intuition suggests that the building blocks are simpler than final object

5 We will first review Ψ as its conceptually simpler and show some examples where

the correlator is nicer and a direct connection with amplitudes
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Harmonic Oscillator: Gaussian Wave Function

1 We defined the ground state wave function via path integral

Ψ(ϕ) =

∫ φ(0)=ϕ

φ(−∞)=0
Dφe iS

However they also satisfy Schrodinger Equation

HΨ = 0

2 For example: Ground state wave function for Harmonic Oscillator

H =
d2

dx2
+ ω2x2 =⇒ ψ(x) = e−

1
2
ω2x2

3 Similarly for a free scalar field in flat space you integrate over all oscillator modes

H =

∫
d3k

∂2

∂φ
k⃗
∂φ−k⃗

+ ω2
kφk⃗

φ−k⃗
=⇒ Ψ[φ] = e

− 1
2

∫
d3k ω2

kφk⃗
φ−k⃗

Would obtain the same result from e−Son−shell .
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1 Higher order corrections are evaluated perturbatively:

Either by (Hfree + Hint) |ψ⟩ = 0 [Hatfield] or by solving the path integral

2 Generic structure is of the form:

Ψ[φ] ∼ exp
[ ∫

d3k1d
3k2 Ψ2(k⃗1, k⃗2) φ(k⃗1)φ(k⃗2)

+

∫
d3k1 · · · d3k4 Ψ4(k⃗1, · · · , k⃗4) φ(k⃗1) · · ·φ(k⃗4) + · · ·

]
— Ψn(k⃗1, · · · , k⃗n) are called Wave function coefficients and by analytical

continutation, related to AdS correlators.

3 Often known as Old Fashioned Perturbation Theory and is clearly non-covariant
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Witten Diagrams

1 Perturbation theory can be expressed in terms of Witten Diagrams

2 No time-translation invariance

,

Bulk-Boundary & Bulk-Bulk Propagators.

Example: for Ψ4 in ϕ4 and ϕ3 theory:

,

3 Momentum conservation along spatial directions only.
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Example of a Witten diagram

1 Consider Conformally Coupled scalar field.

– Related to massless scalar fields in flat space via Weyl Transformation.

2 Propagators are (Notation: k ≡ |k⃗|)

ϕc (t; k) = te ikt ,

G(t, t′; k) =
tt′

2k

[
θ(t − t′)e ik(t−t′) + θ(t′ − t)e ik(t

′−t)︸ ︷︷ ︸
Feynman

− e ik(t+t′)︸ ︷︷ ︸
B.C

]
Satisfies Dirichlet boundary conditions hence not translational inv.

3 Example: Contribution to tree-level ψ4 in ϕ4 theory,

k1 k2 k3 k4 =

∫ 0

−∞
dte i(k1+···+k4)t

∫
d3xe i

∑
i k⃗i ·⃗x︸ ︷︷ ︸

spatial mom cons.

=
δ(k⃗1 + · · ·+ k⃗4)

k1 + k2 + k3 + k4

— Time integrals are cut-off at t = 0 (Need correct iϵ prescriptions at η → −∞)

— Hence instead of getting δ(k1 + k2 + k3 + k4) we get a poles

(k1 + k2 + k3 + k4)−1! (related to flat space limits [Raju] )
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Exchange Diagram: ϕ4

Consider an exchange diagram in ϕ4 theory: (k = |k⃗1 + k⃗2 + k⃗3| and kijm = |k⃗i | + |k⃗j | + |k⃗m|)

k⃗1

k⃗2 k⃗5

k⃗3 k⃗6k⃗4

k⃗ = k⃗1 + k⃗2 + k⃗3

=

∫ 0

−∞
dt1dt2e

ik123t1e ik456t2G(t1, t2, k⃗)

=
1

(k123 + k456)(k + k123)(k + k456)

=
1

(k123 + k456)
Ψ4(k, k1, k2, k3)Ψ3(k, k4, k5, k6) =⇒ Product of Lower Point Ψ

1 No energy conservation

2 These poles have a physical meaning (eg: flat space limit [Raju] )

3 Recursive formulas via IBP [Arkani-Hamed, Benincasa, Postnikov] including spinning theories

[Albayrak, CC, Kharel; CC, Chowdhury, Moga, Singh]
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Exchange Diagram: ϕ3

Consider an exchange diagram in ϕ3 theory: (k = |k⃗1 + k⃗2| and kij = |k⃗i | + |k⃗j |)

k⃗1 k⃗2 k⃗3k⃗4

k⃗ = k⃗1 + k⃗2

=

∫ 0

−∞

dt1dt2

(t1t2)2
e i(k1+k2)t1e i(k3+k4)t2G(t1, t2, k⃗1 + k⃗2)

1 Computing the time integrals gives [Arkani-Hamed, Maldacena]

Ψ4 =
1

1 − u − v

[
Li2(1 − u) + Li2(1 − v) + log(u) log(v) −

π2

6

]
where u = k12+k

k12+k34
, v = k34+k

k12+k34

2 Exactly equal to 7-pt pentagon! [Drummond, Henn, Trnka] [WIP with S. Prabhu and P. Raman]

Ψ4 =
1

1 − u − v

3 Hence already see dS at tree level ∼ Loops in Amplitudes
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Correlator

1 Notice that we still need the correlator (upto overall factors)

⟨Ψ|ϕ1 · · ·ϕ4|Ψ⟩

=

∫
Dϕϕ1 · · ·ϕ4e−ReΨ(ϕ)

=

∫
Dϕ ϕ1 · · ·ϕ4e−

∫
ReΨ2ϕ

2
(
1 +

∫
ReΨ3ϕ1ϕ2ϕ3 +

∫
ReΨ4ϕ1ϕ2ϕ3ϕ4

+
1

2

∫
ReΨ3ϕ1ϕ2ϕ3

∫
ReΨ3ϕ

′
1ϕ

′
2ϕ

′
3 + · · ·

)
∼ ReΨ4 +

ReΨ3ReΨ3

ReΨ2

2 For higher loops/points expression gets more complicated [Benincasa, Dian] , eg.,

⟨ϕ1 · · ·ϕ4⟩(3) = ψ
(3)
4 +

ψ
(2)
6

ψ2
+
ψ
(1)
4 ψ

(1)
4 ψ

(1)
4

4ψ2ψ2ψ2ψ2
+

ψ
(1)
4 ψ

(1)
6

2ψ2ψ2ψ2
+
ψ
(1)
4 ψ

(2)
4

2ψ2ψ2
+

ψ
(1)
8

ψ2ψ2

3 Claim: the final sum of the RHS is much simpler than inital expectations [CC,

Lipstein, Mei, Sachs, Vanhove] [also see recent work by Glew]
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Status

1 Scalar trees are often difficult and in general lot of connections left to uncover.

[Benincasa, Arkani-Hamed, Baumann, Pimentel, Pajer, Henn, Raman, Jazayeri, Sleight, Taronna · · · ]

2 Only explicit loop integrals done now are mostly axi-symmetric (bubbles,

necklace, banana) [CC, Carmi, Chowdhury, Lipstein, Moga, Mei, Sachs, Singh, Vanhove, Benincasa, Brunello, Mandal,

Mastrolia, Vazao, Bertan, Heckelbacher, de la Cruz, Skvortsov, · · · ]

3 No MHV type computation beyond 4 points even in Yang-Mills [Raju]

4 Three different expressions of 4-graviton correlator and not obvious how they are

related to each other [Raju; Bonifacio, Goodhew, Joyce, Pajer, Stefanyszyn; Armstrong, Goodhew, Lipstein, Mei]

5 Most computations are for the wave functions but we eventually need in-in

correlators.

6 In the next few slides I will describe a new representation for the in-in correlator

expressed in terms of flat space Feynman diagrams

Chandramouli Chowdhury Uni of Southampton

Cosmological Graphs from Scattering Amplitudes



Motivation Conventions Correlators-Intro Wave Function Correlator Difficulty Dressing Rule Applications Conclusion

Wave functions

1 To keep things simple we revisit CC scalars with ϕ4 interaction and consider a

single exchange

2 This is equivalent to a 6-pt function ψ6,

ψ6 =

∫ ∞

0

dt1dt2e
−k123t1 e−k456t2

1

2k

[
Θ12e

−kt12 + Θ21e
−kt21 − e−k(t1+t2)

]
=

∫ ∞

0

dt1dt2e
−k123t1 e−k456t2

∫ ∞

−∞

dp sin(pt1) sin(pt2)

p2 + k2

=

∫ ∞

−∞

dpp2

(p2 + k2
123)(p

2 + k2
456)

1

P2
, Pµ = (p, k⃗)

where I simply interchanged order of integration and performed integrals over t1, t2.

3 Looks like an energy integral over a flat space amplitude

4 However, does not work in the same way for loops and higher points

5 Still need to compute correlator by adding ψn’s
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Correlator

1 However there exists a similar representation for the in-in correlator too

⟨ϕ1 · · ·ϕ6⟩(1) = ψ6 +
ψ4ψ4

ψ2
=

1

(k123 + k456)(k123 + k)(k456 + k)
+

1

k(k123 + k)(k456 + k)

=

∫ ∞

−∞
dp

k123k456

(p2 + k2
123)(p

2 + k2
456)

1

P2
, Pµ = (p, k⃗)

Comparing to wave function, the only difference is the factor in numerator

2 However, for the in-in correlator this Kernel works at arbitrary points and loops.

3 Example: at one loop we have, [CC, Lipstein, Mei, Sachs, Vanhove]

⟨ϕ1 · · ·ϕ4⟩(2) =
∫ ∞

−∞
dp

k12k34

(p2 + k2
12)(p

2 + k2
34)

∫
d4L

L2(L + P)2

4 The Kernel is generally theory dependent

5 In contrast to a Celestial Amplitude, this integral is on a single Feynman diagram

(and not full amplitude)
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Correlator

1 Hence the following representation is true at 4-pts for a class of diagrams,

⟨ϕ1 · · ·ϕ4⟩(s) =
∫ ∞

−∞

dpk12k34

(p2 + k2
12)(p

2 + k2
34)

[
+ + · · ·

]
where the Kernel is written for the s-channel.

Note: Energy conservation exists for the flat space amplitude.

2 Different channels/topologies have a different kernel’s depending on the external
momenta. Example: t-channel’s Kernel

⟨ϕ1 · · ·ϕ4⟩(t) =
∫ ∞

−∞

dpk41k23

(p2 + k2
41)(p

2 + k2
23)

 + · · ·


3 Natural generalization to higher points

Example: Triangle Diagram,

⟨ϕ1 · · ·ϕ6⟩(s) =
∫ ∞

−∞

dp1dp2k12k34k56

(p2
1 + k2

12)(p
2
1 + k2

34)
(
(p1 + p2)2 + k2

56)

∫
d4L

L2(L2 + P1)2(L + P2)2

Not IR/UV divergent.
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1 Rule: Take a Feynman graph, integrate over energies upon multiplying with a

Kernel – gives a cosmological correlator.

— will refer to Kernel as Auxiliary Propagators

2 Diagrammatically,

⟨ϕ1 · · ·ϕ4⟩(s) = =

∫ ∞

−∞

dp k12k34

(p2 + k2
12)(p

2 + k2
34)

∫
d4L

L2(L+ P)2

where Pµ = (p, k⃗) & the red lines denote the 1-D propagators, carrying energy
Example: Triangle

⟨ϕ1 · · ·ϕ6⟩(s) =

=

∫ ∞

−∞

dp1dp2k12k34k56

(p2
1 + k2

12)(p
2
1 + k2

34)
(
(p1 + p2)2 + k2

56)

∫
d4L

L2(L2 + P1)2(L + P2)2
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Higher Masses

1 There are a concrete set of dressing rules worked out for the CC and massless

theories with polynomial interations [CC, A. Lipstein, J. Marshall, J. Mei, I. Sachs]

2 CC scalar: ϕ4 interaction [closely tied to in-out formalism [Donath, Pajer]]

Auxiliary Propagators : ∆(kext , p) =
kext

k2
ext + p2

3 CC scalar: ϕ3 interaction,

∆
(1)
k,p =

∫ ∞

0
ds∆(p, k + s), ∆

(2)
k,p = π

4 Example, for tree level massless scalars, [to appear with A. Lipstein, J. Marshall, J. Zhang]

∆massless(k1, k2, p) = ∂k1∂k2

∫ ∞

0

ds2

k1k2
(1− p∂p)∆(k12 + s, p)

— Gives the IR regularized correlator

5 Almost similar dressing formulas work for spinning theories [to appear ”]
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Loops: Simplicity

1 The dressing rule also leads to simplification at loop level

2 Normally one can compute in-in loops by first computing wave function
trees/loops and then squaring (or using SK). For example,

⟨ϕ1 · · ·ϕ4⟩(2) = Ψ
(2)
4 +

Ψ
(1)
4 Ψ

(1)
4

2Ψ
(0)
2 Ψ

(0)
2

+
Ψ

(1)
6

2Ψ
(0)
2

where

Ψ
(2)
4 = , Ψ

(1)
4 = ,Ψ

(1)
6 =

3 Individually these compute AdS corelators. In particular, consider Ψ
(2)
4 , [CC, Albayrak, Kharel]

[Salcedo, Lee, Melville, Pajer]

Ψ
(2)
4 =

π

k12 + k34

1

ϵ
+ log2

(
k34 − k

k + k12

)
+ log2

(
k12 − k

k + k34

)
+ 2Li2

k + k34

k − k12
+ 2Li2

k + k12

k − k34
+ log(· · · )
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Loops: Simplicity & Transcendentality

1 Example: However the final correlator is a log [Lee; CC, Lipstein, Mei, Sachs, Vanhove]

⟨ϕ1 · · ·ϕ4⟩ =

∫ ∞

−∞
dp

k12k34

(p2 + k2
12)(p

2 + k2
34)

∫
d4L

L2(L + K)2

∼
∫ ∞

−∞
dp

k12k34

(p2 + k2
12)(p

2 + k2
34)

log

(
p2 + k2

Λ2

)

=
π

k12 + k34

[
log

(
(k12 + k)(k34 + k)

Λ2

)
+

k12 + k34

k12 − k34
ln

(
k34 + k

k12 + k

)]
2 Preserving conformal invariance requires a careful regularization [Senatore, Zaldarriaga]

(also see recent work by [Jain, Pajer, Tong] )

⟨ϕ1 · · ·ϕ4⟩ =
π

k12 + k34

[
log

(
(k12 + k)(k34 + k)H2

Λ2(k12 + k34)2

)
+

k12 + k34

k12 − k34
ln

(
k34 + k

k12 + k

)]

– The new branch log(k12 + k34)
2 also predicted by loop intrgral space limit [Raju]

3 Example shows how the transcendentality drops.

4 While the dressing rule is not needed, it makes it easier to see why it happens.
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Loops: Bubble

1 From the dressing rule we get an integral of kind,∫ ∞

−∞

dp

p2 + a2
log(p2 + b2) ∼ π log

In the complex p plane,

×

×

ia

ib
:

∫ ∞

−∞
dp = Res

p=ia
+

∫
disc

,

∫
disc

=

∫ ∞

ib

dp

p2 + a2
π

2 Same conclusion for any Lin insertion. For this class of integrals, we can easily

write this as a Polylog recursion by partial fractions

3 However things start getting more complicated when we encounter
√

p2 + c2,

Examples:

∫ ∞

−∞

dp

(p2 + a2)
√

p2 + c2
log(p2 + b2) ∼ Li2, Triangle/Box ∼

Li2(· · · )√
λ(p1, p2, p3)

4 Discontinuity across a sq-root branch cut is still sq-root
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Loops: Triangle

1 For special 1-loop polygons simplicity is explained by the pole structure of the∫
d3l integrand [CC, Chowdhury, Moga, Singh] [Benincasa, Brunello, Mandal, Mastrolia, Vazao]∫

d4L f (l0, l⃗) =

∫
d3l

∫ ∞

−∞
dL0f (L0, l⃗) =

∫
d3lf (⃗l)

2 Since ⟨· · ·⟩ comes from Ψ they share many poles but differ in one [Lee]

3 At 1-loop: ⟨· · ·⟩ has 1
l
(is similar to an S-matrix pole), whereas Ψ has 1

Etot+l

4 Example:
For tadpole,

Ψ :

∫
d3l

l + 2k
∼ k2 log k vs ⟨· · ·⟩ :

∫
d3l

l
∼ l2

For the bubble:

Ψ :

∫
d3l

(k12 + l + |⃗l + k⃗|)(k34 + l + |⃗l + k⃗|)(k12 + k34 + l)
∼ Li2

vs ⟨· · ·⟩ :

∫
d3l

(k12 + l + |⃗l + k⃗|)(k34 + l + |⃗l + k⃗|)l
∼ log
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Loops: Triangle

1 Non-trivial example: Triangle diagram: no analytical expression exists yet

2 The wave function coefficients contains this pole,∫
d3l

1

(k12 + k34 + k56 + 2l)(k12 + l + l′)(k34 + l + l′′)(k56 + l′ + l′)(k12 + k34 + l + l′)

The master integrals were argued to be Elliptic using differential equations

[Benincasa, Brunello, Mandal, Mastrolia, Vazao]

3 Combing previous argument with this, correlator is expected to be
Polylogarithmic, [CC, Lipstein, Marshall, Mei, Sachs]∫

d3l
1

(l)(k12 + l + l′)(k34 + l + l′′)(k56 + l′ + l′)(k12 + k34 + l + l′)

Consistent with dressing rule as square-roots contain quadratic polynomials

4 However this argument does not fix order of the Polylog

5 Can hope to employ a strategy similar to flat space, where you consider cuts of a

diagram [Abreu, Britto, Duhr, Gardi]
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Cuts and Discs.

1 Correlator = Flat space diagram + Extra 1D propagators,

B(k12, k34) = =

∫ ∞

−∞

dp k12k34

(p2 + k2
12)(p

2 + k2
34)

∫
d4L

L2(L + P)2

Hence you can consider cuts and set things on-shell [to appear CC, S. Jazayeri, A. Lipstein, J.

Marshall, J. Mei, I. Sachs]

2 Can relate to disc. [Cutkosky; t’Hooft, Veltman] , sequential disc., etc. [Bourjaily, Hannesdottir,

McLeod, Schwartz, Vergu] [Benincasa, McLeod, Vergu]

3 Cuts of auxiliary propagators are relatively simple.

– Similar to mass cuts in amplitudes

4 Cutting all auxiliary propagtors recovers the flat space limit (including energy

conserving delta function).
Ex:

=

∫ ∞

−∞
dpδ(p2 + k2

12)δ(p
2 + k2

34)

∫
d4L

L2(L + P)2
= δ(k12 − k34)

∫
d4L

L2(L + P)2
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Sum Rules

1 Further, away from the plane k12 = k34, we get new constraints via relating the
cus with discontinuities

discx2 f (x
2) = f (x2 + iϵ) − f (x2 − iϵ)

2 Predicts new Sum Rules for the correlator via sequential disc.,

B(k12, k34) + B(k12,−k34) + B(−k12, k34) + B(−k12,−k34) = 0

– Extends to higher pt/loop diagrams (more relations via partial energy sum rules).

– Also noted for contact graphs in [Donath, Pajer]

3 No such rule is applicable to wave functions!

– Flat Space Limit/Partial Energy Singularities for ψ can’t be written as sequential Disc.
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Conclusion

1 Obtained an integral representation for in-in correlators in terms of flat space

Feynman diagrams for some theories.

2 New connections between Amplitudes and Cosmological Graphs

3 Integral representations gives new constraints for correlator, loops, etc.
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Future Directions

1 Sum of channels via BCFW, similar to AdS [Raju] ?

2 Generalization to FRW, connection with kinematic flow? [Baumann, Goodhew, Joyce, Lee,

Pimentel, Westerdijk] [Glew, Pokraka] [Capuano, Ferro, Lukowski, Palazio]

3 How sensitive is this story to Bunch-Davies, eg: any similar structure for

correlators in α−vaccua? [WIP with Shibam Das, Nilay Kundu]

4 What can we learn about UV properites of correlators and wave functions/BPHZ

in dS? [Creminelli, Renaux-Petel, Tambalo, Yingcharoenrat] [Herderschee] [WIP with Suvrat Raju]

5 Does this structure sustain after Renormalization, both UV and IR [Bzowski, McFadden,

Skenderis] ?

6 How to handle higher masses [Raman, Yang] [Liu, Qin, Xianyu] ? Can one exploit the tools

developed for the wave function [Benincasa] ?

7 Lessons from previous cutting rules/tree theorems [Benincasa; Melville, Pajer; Salcedo, Melville] ?

8 Do similar dressing formulas exist for OTOC like asymptotic observables in flat

space [Caron-Huot, Giroux, Hannesdottir, Mizera] ?

9 Other correlators ⟨ψ|ϕπ · · · |ψ⟩ and unequal time correlators [Kitching, Heavens] ?

10 Resumming graphs [Starobinsky; Senatore, Gorbenko; Cespedes, Davis, Wang] ?
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