\mathcal{SW} -algebras and G_2 -structures with torsion

MATEO GALDEANO

University of Hertfordshire

Based on 2412.13904 with X. de la Ossa and E. Marchetto, and 2502.02769 with A. de Arriba de la Hera and M. Garcia-Fernandez.

Mathematics and Theoretical Physics Seminar -

01/10/2025

► Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

► Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

► What do we study?

We study certain superconformal algebras, called SW-algebras, and their correspondence to manifolds with (torsionful) G-structures.

► Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

▶ What do we study?

We study certain superconformal algebras, called SW-algebras, and their correspondence to manifolds with (torsionful) G-structures.

▶ Where do we study it?

Manifolds with Spin(7), G₂, SU(2), and SU(3)-structures.

► Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

▶ What do we study?

We study certain superconformal algebras, called SW-algebras, and their correspondence to manifolds with (torsionful) G-structures.

▶ Where do we study it?

Manifolds with Spin(7), G_2 , SU(2), and SU(3)-structures.

► How do we study it?

We look at the algebra of symmetries of a classical σ -model, which is the classical limit of the \mathcal{SW} -algebra. We exploit this connection to give a geometric interpretation of the algebra coefficients.

► Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

What do we study?

We study certain superconformal algebras, called SW-algebras, and their correspondence to manifolds with (torsionful) G-structures.

▶ Where do we study it?

Manifolds with Spin(7), G_2 , SU(2), and SU(3)-structures.

► How do we study it?

We look at the algebra of symmetries of a classical σ -model, which is the classical limit of the \mathcal{SW} -algebra. We exploit this connection to give a geometric interpretation of the algebra coefficients.

▶ Why do we study it?

Interplay between geometry and CFTs (e.g. mirror symmetry).

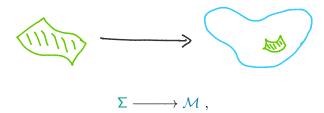
Table of contents

- 1 Motivation: the general idea
- 2 Warm-up: Virasoro algebra
- 3 SW-algebras from G-structures
- 4 Example: G₂-structures
- 5 Vertex algebra perspective
- 6 Conclusion and outlook

Motivation: the general idea

Setup: sigma model approach

String theory (type II or heterotic) as a sigma-model.



- ► Target: d-dimensional manifold with a G-structure.
- Worldsheet: 2-dimensional superconformal field theory.

What is the relation between them and why do we care?

Why is this interesting/useful?

► Interplay between geometry and 2d CFTs.

```
[Odake 89], [Shatashvili, Vafa 94], [Figueroa-O'Farrill 97
```

- Worldsheet algebra provides information about the target geometry and vice versa.
 - Example: connected sum construction as algebra inclusions.

```
[Fiset 18], [Fiset, G. 21], [G. 23]
```

- ► Mirror symmetry.
 - Description of mirror map.
 - Also for G₂ and Spin(7) manifolds.

```
[Lerche, Vafa, Warner 89], [Gaberdiel, Kaste 04], [Braun, Majumder, Otto 19]
```

Can be made mathematically rigorous through the chiral de Rham complex and vertex algebra language.

```
[Ekstrand, Heluani, Kallen, Zabzine 09, 13], [Rodríguez Díaz 16] [Álvarez-Cónsul, De Arriba de La Hera, Garcia-Fernandez 20, 23]
```


The geometry side

The target manifold is equipped with a *G*-structure.

▶ Determined by a collection of characteristic tensors:

$$\{\Phi^1,\ldots,\Phi^n\}$$
.

For example, for a G₂-structure $\{\Phi^1, \Phi^2\} = \{\varphi, \psi\}$

Exterior derivatives encode the torsion classes:

$$d\varphi = \tau_0\,\psi + 3\,\tau_1 \wedge \varphi + *\tau_3\,, \qquad d\psi = 4\,\tau_1 \wedge \psi + *\tau_2\,.$$

We will require the existence of a compatible metric connection ∇^+ with totally skew torsion. This constrains the torsion classes, which can be used to write the torsion

$$au_2 = 0 \implies H = \frac{1}{6} \tau_0 \varphi - \tau_1 \lrcorner \psi - \tau_3.$$

The algebra side

The worldsheet supports an SW-algebra.

Generated by a collection of super operators

$$\{\mathcal{J}^1,\ldots,\mathcal{J}^n\}$$
.

When the operators come close together, their behaviour is under control via the Operator Product Expansion (OPE)

$$\mathcal{J}_{h_i}(Z_1)\mathcal{J}_{h_j}(Z_2) \sim C_{ij}^k \frac{1}{Z_{12}^{h_{ijk}-r/2}} D^r \mathcal{O}_k(Z_2),$$

 Additional technical conditions (associativity, etc.), can be used to abstractly classify these algebras.

Mathematically: SUSY Vertex Algebra.

Meeting point: the sigma model (I)

Consider the $\mathcal{N} = (1,0)$ non-linear sigma model with target \mathcal{M} . We use a superspace formalism, meaning that we repackage fields and their superpartners into superfields.

$$S[X] = \int_{\Sigma} \frac{\mathrm{d}^2 z \, \mathrm{d}\theta}{2 \, \ell_s^2} \left[(g_{ij}(X) + B_{ij}(X)) \, \bar{\partial} X^i D X^j \right] \,,$$

- \triangleright (z,\bar{z}) worldsheet coordinates, θ Grassmann variable.
- $ightharpoonup g_{ab}$ is a metric on \mathcal{M} and B is the B-field, so $H=\mathrm{d}B$.

How do geometry and algebra connect?

Meeting point: the sigma model (II)

 \triangleright Every characteristic p-form ϕ of the G-structure gives rise to a new classical symmetry of the action, called W-symmetry

$$\delta_{\epsilon}^{\Phi} X^{a} = \frac{\epsilon(z,\theta)}{(p-1)!} \Phi^{a}_{a_{2}\cdots a_{p}} DX^{a_{2}} \cdots DX^{a_{p}}.$$

Secretly, this is because the forms satisfy $\nabla^+ \Phi = 0$.

Each symmetry has an associated Noether super current

$$\mathcal{J}_{\mathsf{cl.}}^{\Phi} = \frac{1}{p!} \, \Phi_{a_1 \cdots a_p} \, DX^{a_1} \cdots DX^{a_p}.$$

We find that every form produces a classical current

$$\Phi^i \xrightarrow{\mathcal{W}} \mathcal{J}^i_{cl}$$
.

Meeting point: the sigma model (III)

String theory is a quantum theory and can be studied through a perturbative expansion around the classical theory. We will choose the string length $\ell_s = \sqrt{2\pi\alpha'}$ as our perturbative parameter.

- ► The SW-algebra describes the full quantum theory.
- ► The sigma model describes the classical theory.

Noether currents are classical limits of the quantum operators

$$\mathcal{J}^i \stackrel{\mathsf{cl.}}{\longrightarrow} \mathcal{J}^i_{\mathsf{cl.}}$$
 .

Meeting point: the sigma model (III)

String theory is a quantum theory and can be studied through a perturbative expansion around the classical theory. We will choose the string length $\ell_s = \sqrt{2\pi\alpha'}$ as our perturbative parameter.

- ► The SW-algebra describes the full quantum theory.
- ► The sigma model describes the classical theory.

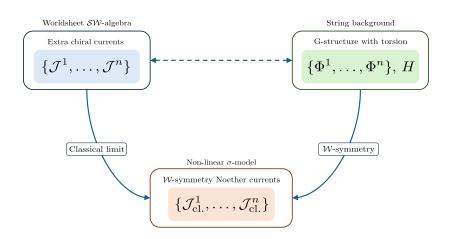
Noether currents are classical limits of the quantum operators

$$\mathcal{J}^i \stackrel{\mathsf{cl.}}{\longrightarrow} \mathcal{J}^i_{\mathsf{cl.}}$$
 .

The algebra of W-symmetries:

- ▶ is generated by the *G*-structure,
- \blacktriangleright and is the classical limit of the \mathcal{SW} -algebra.

Our strategy summarised



Warm-up: Virasoro algebra

$\mathcal{N}=1$ Virasoro algebra (I)

We are familiar with the (super) $\mathcal{N}=1$ Virasoro algebra:

$$\begin{split} [L_m,L_n] &= (m-n)L_{m+n} + \frac{c}{12}(m^3-m)\delta_{m+n,0}\,, \\ [L_m,G_r] &= (\frac{m}{2}-r)G_{m+r}\,, \qquad \{G_r,G_s\} = 2L_{r+s} + \frac{c}{3}(r^2-\frac{1}{4})\delta_{r+s,0}\,, \end{split}$$

where c is the central charge, and L_m , G_r are the Fourier modes of the stress tensor T and the supersymmetry generator G

$$T(z) = \sum_{m \in \mathbb{Z}} L_m z^{m-2}, \qquad G(z) = \sum_{r \in \mathbb{Z} + \frac{1}{2}} G_r z^{r-\frac{3}{2}},$$

$\mathcal{N}=1$ Virasoro algebra (II)

The can be combined into a super stress tensor \mathcal{T}

$$\mathcal{T}(Z) = -\frac{1}{2}G(z) + \theta T(z),$$

and the commutation relations can be encoded into a super OPE

$$\mathcal{T}(Z_1)\mathcal{T}(Z_2) \sim \frac{c}{6} \frac{1}{Z_{12}^3} + \frac{3}{2} \frac{\theta_{12}}{Z_{12}^2} \mathcal{T}(Z_2) + \frac{1}{2Z_{12}} D \mathcal{T}(Z_2) + \frac{\theta_{12}}{Z_{12}} \partial \mathcal{T}(Z_2) + \cdots$$

How does this manifest in the classical theory?

Superconformal symmetry

The action is invariant under superconformal transformations

$$\delta_{\epsilon}^{\mathcal{T}} X^{i} = -\epsilon \, \partial X^{i} - \frac{1}{2} D \epsilon \, D X^{i} \,,$$

the associated Noether current is the classical super stress tensor

$$\mathcal{T}_{\mathsf{cl.}}(Z) = -rac{1}{2} \mathit{G}_{\mathsf{cl.}}(z) + \theta \; \mathit{T}_{\mathsf{cl.}}(z) \, ,$$

where for example $G_{cl.} = i \left(G_{ij} \partial x^i \psi^j + \frac{1}{3!} \ell_s H_{ijk} \psi^i \psi^j \psi^k \right)$.

What is the associated classical algebra of symmetries?

4□ > 4□ > 4□ > 4□ > 4□ > 900

From classical symmetries to OPEs (I)

The commutator of two superconformal transformations is another superconformal transformation

$$[\delta_{\epsilon_1}^{\mathcal{T}}, \delta_{\epsilon_2}^{\mathcal{T}}] X^i = \delta_{\epsilon_3}^{\mathcal{T}} X^i ,$$

where $\epsilon_3 = \epsilon_1 \partial \epsilon_2 - \partial \epsilon_1 \epsilon_2 + \frac{1}{2} D \epsilon_1 D \epsilon_2$.

▶ Using the conformal Ward identity, we can rewrite infinitesimal transformations as contour integrations:

$$\delta_{\epsilon_3}^{\mathcal{T}} X^i(\zeta) = -\frac{1}{2\pi i} \oint_{\zeta} dZ \, \epsilon_3(Z) \mathcal{T}_{\mathsf{cl.}}(Z) X^i(\zeta) \,,$$

The same holds for the commutator

$$[\delta_{\epsilon_1}^{\mathcal{T}}, \delta_{\epsilon_2}^{\mathcal{T}}] X^i(\zeta) = \oint_{\zeta} \frac{\mathrm{d} Z_2}{2\pi i} \oint_{\zeta_2} \frac{\mathrm{d} Z_1}{2\pi i} \, \epsilon_1(Z_1) \epsilon_2(Z_2) \, \mathcal{T}_{\mathsf{cl.}}(Z_1) \mathcal{T}_{\mathsf{cl.}}(Z_2) \, X^i(\zeta) \,,$$

From classical symmetries to OPEs (II)

After integrating by parts, the classical OPE can be read off.

$$\mathcal{T}_{\mathsf{cl.}}(Z_1)\mathcal{T}_{\mathsf{cl.}}(Z_2) \sim \frac{3}{2} \frac{\theta_{12}}{Z_{12}^2} \mathcal{T}_{\mathsf{cl.}}(Z_2) + \frac{1}{2Z_{12}} D \mathcal{T}_{\mathsf{cl.}}(Z_2) + \frac{\theta_{12}}{Z_{12}} \partial \mathcal{T}_{\mathsf{cl.}}(Z_2) + \dots$$

From classical symmetries to OPEs (II)

After integrating by parts, the classical OPE can be read off.

$$\mathcal{T}_{\text{cl.}}(Z_1)\mathcal{T}_{\text{cl.}}(Z_2) \sim \frac{3}{2} \frac{\theta_{12}}{Z_{12}^2} \mathcal{T}_{\text{cl.}}(Z_2) + \frac{1}{2Z_{12}} D \mathcal{T}_{\text{cl.}}(Z_2) + \frac{\theta_{12}}{Z_{12}} \partial \mathcal{T}_{\text{cl.}}(Z_2) + \dots$$

We recover the $\mathcal{N}=1$ Virasoro algebra... except for the central charge term!

▶ This was to be expected: the classical OPE should only reproduce the classical version of the algebra, which in this case is the Witt algebra. The central charge is a quantum object and as such it does not appear.

SW-algebras from G-structures

Finding the \mathcal{SW} -algebra candidate

- Let \mathcal{M} be a Riemannian manifold equipped with a G-structure with characteristic forms $\{\Phi^1, \dots, \Phi^n\}$.
- **Each** form Φ^i generates a W-symmetry.
- ▶ We have a set of classical currents $\{\mathcal{T}, \mathcal{J}_{\text{cl.}}^1, \dots, \mathcal{J}_{\text{cl.}}^n\}$

The underlying \mathcal{SW} -algebra must be generated by

$$\langle \mathbb{1}, \mathcal{T}, \mathcal{J}^1, \ldots, \mathcal{J}^n \rangle$$
.

Commutator

[Howe, Stojevic 06], [Howe, Papadopoulos, Stojevic 10]

 \triangleright The commutator of two \mathcal{W} -symmetries is

$$[\delta_{\epsilon_1}^{\scriptscriptstyle \Phi},\delta_{\epsilon_2}^{\scriptscriptstyle \Psi}]X^i = \delta_{\epsilon_U}^{\scriptscriptstyle U}X^i + \delta_{\epsilon_N}^{\scriptscriptstyle N}X^i + \delta_{\epsilon_{\mathcal{T}V}}^{\scriptscriptstyle \mathcal{T}V}X^i \,.$$

It depends on contractions of the forms and the torsion:

$$\begin{split} U &= \frac{1}{c_U} \, \Phi^i \wedge \Psi_i \ , \\ V &= \frac{1}{c_V} \, \Phi^{ij} \wedge \Psi_{ij} \ , \\ N &= \frac{\ell_s}{c_N} \, \left(H_{jk} \wedge \Phi^j \wedge \Psi^k - 2 (-1)^p \, \frac{c_V}{d - (p + q - 4)} \, H \wedge V \right) \ , \end{split}$$

lacktriangle The $\delta^{\mathcal{T}V}$ symmetry is new and has a composite current $\mathcal{I}^{\mathcal{T}\Phi} = -\mathcal{T} \mathcal{I}^{\Phi}$

Classical super OPE

Analogous computation to the superconformal case provides a formula for the "classical" terms in the associated OPEs.

$$\begin{split} \mathcal{J}_{\text{cl.}}^{\Phi}(Z_1) \mathcal{J}_{\text{cl.}}^{\Psi}(Z_2) &\sim (-1)^{p+1} \, c_U \, \frac{\mathcal{J}_{\text{cl.}}^{U}(Z_2)}{Z_{12}} \\ &+ (-1)^{p+1} \, c_U \left(\frac{p-1}{p+q-2} \right) \frac{\theta_{12}}{Z_{12}} D \mathcal{J}_{\text{cl.}}^{U}(Z_2) \\ &+ (-1)^{p} \, c_N \, \frac{\theta_{12}}{Z_{12}} \mathcal{J}_{\text{cl.}}^{N}(Z_2) \\ &+ c_V \left(\frac{2}{d-(p+q-4)} \right) \frac{\theta_{12}}{Z_{12}} \, \mathcal{T}_{\text{cl.}}(Z_2) \mathcal{J}_{\text{cl.}}^{V}(Z_2) + \dots \, . \end{split}$$

The algebra is described purely by geometric data.

Our strategy

In each case we must:

- ▶ Identify characteristic forms of the *G*-structure.
- ▶ Propose candidate families of SW-algebras.
- Compare classical and quantum OPEs.

We hope to identify terms and provide a geometrical meaning to the coefficients of the algebra.

Example: G₂-structures

What is known?

▶ In the absence of torsion, the correspondence is well-known:

```
Trivial holonomy \(\to\) Free algebra
   U(n)-holonomy \longleftrightarrow \mathcal{N} = 2 Virasoro algebra
 SU(n)-holonomy \longleftrightarrow Odake algebra
     G_2-holonomy \longleftrightarrow G_2 Shatashvili-Vafa
Spin(7)-holonomy \longleftrightarrow Spin(7) Shatashvili-Vafa
```

```
[Figueroa-O'Farrill, Schrans 91, 92], [Blumenhagen 92], [Figueroa-O'Farrill 97]
```

▶ In the presence of torsion, some results for the $\mathcal{N}=2$ and G_2 cases. For example, a deformed G₂ Shatashvili-Vafa algebra can be obtained in AdS₃ \times S³ \times T⁴ backgrounds.

[Álvarez-Cónsul, De Arriba de La Hera, Garcia-Fernandez 20, 23] [Fiset, Gaberdiel 21]

Warm-up example

Let $\mathcal{M} = \mathbb{R}^n$, and take H = 0.

- We have *n* covariantly constant one-forms $\sigma^I = dx^I$.
- ► This gives *n* classical currents \mathcal{J}_{I}^{σ} .
- Immediate to compute:

$$U_{IJ}=\delta_{IJ}1\,,\qquad V=0\,,\qquad N=0\,.$$

▶ The classical OPE is:

$$\mathcal{J}_I^{\sigma}(Z_1)\mathcal{J}_J^{\sigma}(Z_2)\sim -rac{\delta_{IJ}}{Z_{12}}+\ldots\,,$$

We do get back the OPEs of *n* free super fields, as we should!

G₂-structures

A G_2 -structure on a seven-dimensional Riemannian manifold ${\mathcal M}$ is determined by the associative three-form φ

$$\varphi = \mathrm{d} x^{246} - \mathrm{d} x^{235} - \mathrm{d} x^{145} - \mathrm{d} x^{136} + \mathrm{d} x^{127} + \mathrm{d} x^{347} + \mathrm{d} x^{567} \,.$$

- \blacktriangleright It determines a metric and an orientation on \mathcal{M} .
- Gives rise to coassociative four-form $\psi = *\varphi$.

There are four torsion classes associated with a G_2 -structure:

$$d\varphi = \tau_0 \, \psi + 3 \, \tau_1 \wedge \varphi + *\tau_3 \,, \qquad d\psi = 4 \, \tau_1 \wedge \psi + *\tau_2 \,.$$

Demanding $\tau_2 = 0$, we find the torsion

$$H = \frac{1}{6} \tau_0 \varphi - \tau_1 \lrcorner \psi - \tau_3.$$

G₂ algebra candidates

- We have a 3-form φ and a 4-form ψ .
- ightharpoonup Look at algebras generated by an operator \mathcal{J}^{φ} of conformal weight $\frac{3}{2}$ and an operator \mathcal{J}^{Ψ} of conformal weight $\frac{4}{2}=2$.

The algebra must be a member of the $SW(\frac{3}{2},\frac{3}{2},2)$ family. This family depends on two free parameters:

- c, the central charge.
- \triangleright λ , measuring the self-coupling $C_{\omega\omega}^{\varphi}$.

[Blumenhagen 91]

Are all these algebras allowed? What is the meaning of λ ?

4□ > 4□ > 4□ > 4□ > 4□ > 900

G₂ classical OPEs

The results of the classical computation are:

$\mathcal{J}^1_{cl.}$	$\mathcal{J}_{cl.}^2$	$\mathcal{J}_{cl.}^{\mathit{U}}$	$\mathcal{J}_{cl.}^{\mathit{N}}$	$\mathcal{J}_{cl.}^V$	c _U	CN	c _V
$\mathcal{J}^{arphi}_{cl.}$	$\mathcal{J}^{arphi}_{cl.}$	$\mathcal{J}_{cl.}^{\psi}$	-	-	6	-	-
$\mathcal{J}^{arphi}_{cl.}$	$\mathcal{J}_{cl.}^{\psi}$	_	-	$ \mathcal{J}^{arphi}_{cl.} $	-	-	12
$\mathcal{J}_{cl.}^{\psi}$	$\mathcal{J}_{cl.}^{\psi}$	_	$-\mathcal{J}_{cl.}^{arphi}\mathcal{J}_{cl.}^{\psi}$	$\mathcal{J}_{cl.}^{\psi}$	-	$\frac{2}{3} \tau_0 \ell_s$	12

Watch out for that scalar torsion class!!!

G₂ comparison (I)

Now for the OPE comparison:

- ▶ OPEs $\mathcal{J}_{cl}^{\varphi} \mathcal{J}_{cl}^{\varphi}$ and $\mathcal{J}_{cl}^{\varphi} \mathcal{J}_{cl}^{\psi}$ fix the normalisation.
- ► The only remaining OPE is

$$\mathcal{J}_{\text{cl.}}^{\psi}(Z_1)\mathcal{J}_{\text{cl.}}^{\psi}(Z_2) \sim -\frac{2}{3}\ell_s\tau_0\frac{\theta_{12}}{Z_{12}}\mathcal{J}_{\text{cl.}}^{\varphi}\mathcal{J}_{\text{cl.}}^{\psi} + 8\frac{\theta_{12}}{Z_{12}}\mathcal{T}_{\text{cl.}}\mathcal{J}_{\text{cl.}}^{\psi} + \dots$$

However, in the quantum OPE the number 8 is instead 12.

A puzzle! Is everything lost?

G₂ comparison (I)

Now for the OPE comparison:

- ▶ OPEs $\mathcal{J}_{cl}^{\varphi} \mathcal{J}_{cl}^{\varphi}$ and $\mathcal{J}_{cl}^{\varphi} \mathcal{J}_{cl}^{\psi}$ fix the normalisation.
- ► The only remaining OPE is

$$\mathcal{J}_{\text{cl.}}^{\psi}(Z_1)\mathcal{J}_{\text{cl.}}^{\psi}(Z_2) \sim -\frac{2}{3}\ell_s \tau_0 \frac{\theta_{12}}{Z_{12}}\mathcal{J}_{\text{cl.}}^{\varphi}\mathcal{J}_{\text{cl.}}^{\psi} + 8\frac{\theta_{12}}{Z_{12}}\mathcal{T}_{\text{cl.}}\mathcal{J}_{\text{cl.}}^{\psi} + \dots$$

However, in the quantum OPE the number 8 is instead 12.

A puzzle! Is everything lost?

No.

G₂ comparison (II)

- Within the two parameter family, some algebras are special: they admit a tricritical Ising model as a subalgebra.
- ► Through some representation theory arguments, this means there are some distinguished operators that can be quotiented out from the theory: null fields.
- ▶ In this situation, the coefficient 8 (or 12) is only well-defined up to null fields.

G₂ comparison (II)

- ▶ Within the two parameter family, some algebras are special: they admit a tricritical Ising model as a subalgebra.
- ► Through some representation theory arguments, this means there are some distinguished operators that can be quotiented out from the theory: null fields.
- ► In this situation, the coefficient 8 (or 12) is only well-defined up to null fields.

Solution to the puzzle: a matching with the classical algebra is possible only in a particular locus.

In this situation, a geometric interpretation is possible.

G₂ comparison (III)

What is this distinguished locus? Surprise surprise, it is the family found by Fiset and Gaberdiel, obtained by setting:

$$c = \frac{21}{2} - \frac{6}{k}, \quad \lambda^2 = \frac{32(3k-2)^2}{k^2(49k-30)},$$

where k is the parameter of the family.

Physical interpretation: \sqrt{k} gives you the radius R_{AdS} of the AdS₃ spacetime component of the string background in units of ℓ_s

$$k = 2\pi \left(\frac{R_{\text{AdS}}}{\ell_{\text{s}}}\right)^2.$$

The limit $k \to \infty$ recovers a flat spacetime.

G₂ comparison (IV)

Working with the deformed Shatashvili-Vafa algebra, we can compare the remaining OPE coefficient. This requires an expansion in powers of ℓ_s and yields

$$au_0 = \frac{1}{\sqrt{\pi}} \frac{6}{7} \frac{1}{R_{\text{AdS}}} + O(\ell_s^2).$$

This recovers the supergravity expectation!

G₂ conclusion

Note that the central charge of the algebra is now:

$$c = \frac{21}{2} - \frac{49}{12} \tau_0^2 \ell_s^2 + O(\ell_s^3),$$

corrections to the central charge proportional to H^2 are expected in supergravity, and we confirm that suspicion.

- Our classical computation selects a distinguished one-parameter locus within all the space of amenable SW-algebras.
- ► The parameter is directly tied to the scalar torsion class.
- Torsionless limit recovers the special holonomy case!

Vertex algebra perspective

Reformulating the statements

To make these physical ideas mathematically rigorous, we need to understand several concepts:

- ▶ SUSY Vertex Algebras: these are SW-algebras.
- Courant algebroids: the most convenient language to describe the geometry of supergravity.
- ► The chiral de Rham complex: a sheaf of SUSY Vertex Algebras that can be defined from Courant algebroids.

"Having an SW-algebra underlying a supergravity solution" then means

"finding an embedding of a SUSY Vertex Algebra into sections of the corresponding chiral de Rham complex".

Vertex algebras (I)

A vertex algebra $(V, |0\rangle, T, Y(\cdot, z))$ is:

- ▶ A vector superspace $V = V_0 \oplus V_1$ (space of states).
- ▶ An even vector $|0\rangle \in V_0$ (vacuum vector).
- ▶ An even endomorphism $T: V \rightarrow V$ (infinitesimal translation).
- A parity-preserving linear map $Y \colon V \to \operatorname{End}(V)[[z^{\pm}]]$ (state-field correspondence).

In addition, three axioms must be satisfied (vacuum, translation covariance and locality).

Where are the OPFs?

In this language, a field is a formal sum

$$a(z) := Y(a,z) = \sum_{n \in \mathbb{Z}} a_{(n)} z^{-n-1},$$

with Fourier modes $a_{(n)} \in \text{End}(V)$.

- ▶ Given two fields a(z), b(w), we can write a(z)b(w) as a Laurent expansion in (z - w).
- Ignoring the regular part, this defines the OPE of two fields:

$$a(z)b(w) \sim \sum_{n\geq 0} \frac{(a_{(n)}b)(w)}{(z-w)^{n+1}}.$$

We will call $a_{(n)}b$ the *n*-product of *a* and *b*.

SUSY vertex algebra

A SUSY vertex algebra is a tuple $(V, |0\rangle, S, Y(\cdot, z))$, where

- $(V, |0\rangle, T = S^2, Y(\cdot, z))$ is a vertex algebra,
- and S: V → V is an odd linear map which is furthermore a derivation for the n-products.
- ▶ The algebra is conformal if it includes a field L(z) satisfying the Virasoro algebra.
- ▶ It is superconformal if it also has the superpartner G(z).

How to operate in practice

The information of the OPEs can be recast as the λ -bracket. Furthermore, a normally ordered product can be defined

$$[a_{\lambda}b] = \sum_{n \in \mathbb{Z}} \frac{\lambda^n}{n!} a_{(n)}b, \qquad :ab:=a_{(-1)}b.$$

It turns out this is all one needs to define a vertex algebra:

In practice, we just need to specify the generating fields, their λ -bracket and the action of S to define the vertex algebra.

Example: the Neveu-Schwarz algebra

The Neveu-Schwarz algebra (which a physicist would call the $\mathcal{N}=1$ super-Virasoro algebra) with central charge c is the SUSY vertex algebra freely generated by the $\mathbb{C}[T]$ -module

$$\mathbb{C}G \oplus \mathbb{C}L$$
,

the odd derivation S defined by

$$SG = 2L$$
, $2SL = TG$,

and the λ -brackets

$$[L_{\lambda}L] = (T+2\lambda)L + c\frac{\lambda^3}{12}, \qquad [L_{\lambda}G] = \left(T+\frac{3}{2}\lambda\right)G.$$

More examples

- ▶ Given a quadratic Lie algebra $(\mathfrak{g}, (\cdot|\cdot))$ and a scalar $k \in \mathbb{C}$, one can define in a similar way the universal superaffine vertex algebra with level k associated to \mathfrak{g} , denoted $V^k(\mathfrak{g}_{\text{super}})$.
- ▶ One can also similarly define the deformed Shatashvili–Vafa algebra SV_a with parameter $a \in \mathbb{C}$.
 - ► This provides a precise abstract mathematical definition of the G₂ algebra we encountered earlier.
 - ▶ The parameter *a* is related to the *k* we used before via

$$a=i\sqrt{\frac{2}{k}}\,,$$

and $a \rightarrow 0$ recovers the Shatashvili–Vafa algebra.

Chiral de Rham complex (1)

Given M a manifold, we can construct a SUSY vertex algebra $\Omega_M^{ch}(U)$ on each open subset U by taking the $\mathbb{C}[T]$ -module

$$(C^{\infty}(U) \oplus (\mathfrak{X}(U) \oplus \Omega^{1}(U)) \oplus \Pi(\mathfrak{X}(U) \oplus \Omega^{1}(U))) \otimes \mathbb{C}[T],$$

with Tf = df, the odd derivation S defined by

$$Sf := \Pi df$$
, $S\Pi X := X$, $S\Pi \eta := \eta$,

for $X \in \mathfrak{X}(U)$, $\eta \in \Omega^1(U)$, and the λ -brackets

$$[X_{\lambda}f] = X(f), \quad [X_{\lambda}\Pi Y] = \Pi[X,Y], \quad [X_{\lambda}Y] = [X,Y],$$
$$[X_{\lambda}\Pi\eta] = \Pi L_{X}\eta, \quad [X_{\lambda}\eta] = L_{X}\eta + \lambda \iota_{X}\eta, \quad [\Pi X_{\lambda}\Pi\eta] = \iota_{X}\eta$$

One also has to quotient by some ideals, but we skip this.

Chiral de Rham complex (II)

For a manifold M, the assignment $U \to \Omega_M^{ch}(U)$ defines a sheaf of SUSY vertex algebras Ω_M^{ch} called the chiral de Rham complex.

The presence of $\mathfrak{X}(U) \oplus \Omega^1(U)$ should remind us a lot of generalised geometry...and in fact:

There is a canonical procedure to construct a chiral de Rham complex from a Courant algebroid.

Courant algebroids

A Courant algebroid is a quadruple $(E, \langle \cdot, \cdot \rangle, [\cdot, \cdot], \pi)$ with

- E a vector bundle over M,
- \triangleright $\langle \cdot, \cdot \rangle$ a non-degenerate symmetric bilinear form on E,
- \triangleright $[\cdot,\cdot]: E\times E\to E$ a bilinear map on E,
- ▶ and $\pi: E \to TM$ a bundle map,

satisfying some additional conditions (Jacobi, etc). We always have the following short sequence of vector bundles:

$$0 \to T^*M \stackrel{\pi^*}{\to} E \stackrel{\pi}{\to} TM \to 0$$
.

We call E exact if this short sequence is exact.

Any exact Courant algebroid E on M is isomorphic to the generalised tangent bundle for some closed $H \in \Omega^3 M$.

Generalised tangent bundle

The generalised tangent bundle $(\mathbb{T}M, \langle \cdot, \cdot \rangle, [\cdot, \cdot]_H, \pi)$ is given by

- ightharpoonup $TM = TM \oplus T^*M$,
- $ightharpoonup \langle \cdot, \cdot \rangle$ the natural symmetric bilinear form

$$\langle X + \xi, Y + \eta \rangle = \frac{1}{2} (\eta(X) + \xi(Y)),$$

where $X, Y \in \Gamma(TM)$, $\xi, \eta \in \Gamma(T^*M)$.

 $[\cdot,\cdot]_H$ the *H*-twisted Dorfman bracket

$$[X + \xi, Y + \eta]_H := [X, Y] + \mathcal{L}_X \eta - \iota_Y d\xi + H(X, Y, \cdot).$$

for some closed $H \in \Omega^3 M$,

▶ π : $\mathbb{TM} \to TM$ is the natural projection to TM.

The Lie group case

Assume now M = K is a compact Lie group and focus on left-invariant exact Courant algebroids on K.

 Left-invariant sections define a quadratic Lie algebra (with the induced bracket and pairing)

$$\mathfrak{g} \coloneqq \Gamma(\mathbb{T}M)^K = \mathfrak{k} \oplus \mathfrak{k}^*,$$

The Lie group case

Assume now M = K is a compact Lie group and focus on left-invariant exact Courant algebroids on K.

► Left-invariant sections define a quadratic Lie algebra (with the induced bracket and pairing)

$$\mathfrak{g} \coloneqq \Gamma(\mathbb{T}M)^K = \mathfrak{k} \oplus \mathfrak{k}^*,$$

Proposition

There is an embedding

$$V^2(\mathfrak{g}_{super}) \hookrightarrow \Gamma(K, \Omega_K^{\operatorname{ch}}(\mathbb{T}M))$$

of the superaffine vertex algebra $V^2(\mathfrak{g}_{super})$ of level k=2 on the space of global sections $\Gamma(K,\Omega_K^{ch}(\mathbb{T}K))$ of $\Omega_K^{ch}(\mathbb{T}K)$.

Explicit realisations

We focus on certain supergravity backgrounds built from 7-dimensional group manifolds with different G₂-structures.

We have constructed explicit embeddings of the SV_a algebra in the corresponding superaffine vertex algebra $V^k(\mathfrak{g}_{super})$, inducing embeddings into the global sections of the chiral de Rham complex.

- $ightharpoonup \mathbb{S}^3 \times \mathbb{T}^4$, two G₂-structures.
 - As a torus bundle over Hopf surface: $\tau_0 = 0$, algebra is SV₀.
 - As a sphere bundle over four tori: $\tau_0 \neq 0$, algebra is SV_a .
- $ightharpoonup \mathbb{S}^3 \times \mathbb{S}^3 \times \mathbb{T}^1$, three G_2 -structures.
 - ► Case 1: $\tau_0 = 0$, $\tau_1 \neq 0$, algebra is SV₀.
 - ightharpoonup Case 2: $\tau_0 \neq 0$, $\tau_1 = 0$, algebra is SV_a .
 - ightharpoonup Case 3: $\tau_0 \neq 0$, $\tau_1 \neq 0$, algebra is SV_a .

A conjecture

Let M be a 7-dimensional Riemannian manifold admitting a solution to the Killing spinor equations with parameter $\lambda \in \mathbb{R}$ and closed NS flux H (that is, a solution of NS-NS supergravity):

$$abla^+ \eta = 0, \qquad \left(\nabla^{1/3} - \frac{1}{2} \zeta \right) \cdot \eta = \lambda \eta, \qquad \mathrm{d} H = 0,$$

for a real spinor η , a three-form $H \in \Omega^3$, and a one-form $\zeta \in \Omega^1$. Here, ∇^+ and $\nabla^{1/3}$ are the spin connection and Dirac operator of the connections with skew torsion H and $\frac{1}{3}H$, respectively.

A conjecture

Let M be a 7-dimensional Riemannian manifold admitting a solution to the Killing spinor equations with parameter $\lambda \in \mathbb{R}$ and closed NS flux H (that is, a solution of NS-NS supergravity):

$$abla^+ \eta = 0, \qquad \left(
abla^{1/3} - \frac{1}{2} \zeta \right) \cdot \eta = \lambda \, \eta, \qquad \mathrm{d} H = 0,$$

for a real spinor η , a three-form $H \in \Omega^3$, and a one-form $\zeta \in \Omega^1$. Here, ∇^+ and $\nabla^{1/3}$ are the spin connection and Dirac operator of the connections with skew torsion H and $\frac{1}{3}H$, respectively.

Conjecture

Then, its chiral de Rham complex admits an embedding of the SUSY vertex algebra SV_a, where the value of a is determined by the eigenvalue λ of the Dirac spinor η .

Conclusion and outlook

Conclusions

- We find a procedure to compute classical OPEs in the worldsheet algebra in terms of geometric data in the target.
- Comparing classical and quantum algebras gives an interpretation of the parameters in terms of torsion classes.
- Generically, the presence of torsion modifies the OPEs and the algebra differs from the one found for special holonomy.
- We find mathematical evidence for our results using the formalism of vertex algebras.

Open questions

- Can we understand all the quantum effects on the OPEs?
- Can we find algebras for backgrounds with RR fluxes?
- Can we use the algebras with torsion to obtain new geometric information (e.g. about mirror symmetry)?
- ► Can we prove the embedding conjecture?
- Can we do something similar for particles or membranes?
 - Hopefully more on this soon, with Hyungrok and Leron!

Thank you!

