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We study certain superconformal algebras, called S)V-algebras, and
their correspondence to manifolds with (torsionful) G-structures.

» Where do we study it?
Manifolds with Spin(7), G», SU(2), and SU(3)-structures.
» How do we study it?

We look at the algebra of symmetries of a classical o-model, which
is the classical limit of the SW-algebra. We exploit this connection
to give a geometric interpretation of the algebra coefficients.

» Why do we study it?

Interplay between geometry and CFTs (e.g. mirror symmetry).
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Motivation: the general idea
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Setup: sigma model approach

String theory (type Il or heterotic) as a sigma-model.

» Target: d-dimensional manifold with a G-structure.

> 5

> — M,

» Worldsheet: 2-dimensional superconformal field theory.

What is the relation between them and why do we care? J
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Why is this interesting/useful?

P Interplay between geometry and 2d CFTs.

[Odake 897, Shatashvili, afa 94], [Figueroa-O’'Farrill 97]

» Worldsheet algebra provides information about the target
geometry and vice versa.

» Example: connected sum construction as algebra inclusions.

[Fiset 81, "iset, G. 2 , G. 23]

» Mirror symmetry.

» Description of mirror map.
> Also for Gy and Spin(7) manifolds.

[Lerche, Vafa, Warner 89], [Gaberdiel, Kaste 04], [Braun, Majumder, Otto 19]

» Can be made mathematically rigorous through the chiral de
Rham complex and vertex algebra language.

[Ekstrand, Heluani, Kallen, Zabzine 09, 13], Rodriguez Diaz

[Alvarez )e Arriba de La Hera, Garcia-Fernandez 20, 23
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The geometry side

The target manifold is equipped with a G-structure.
» Determined by a collection of characteristic tensors:
{ol,... 0"},
For example, for a Gp-structure {®1, &2} = {p, ¢}
P Exterior derivatives encode the torsion classes:
dp =711 +311Ap+*73, dipy =41 Np+ *72.
» We will require the existence of a compatible metric

connection VT with totally skew torsion. This constrains the
torsion classes, which can be used to write the torsion

1
=0 —= H:670g0—7'1_|1,[)—73.
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The algebra side

The worldsheet supports an S)VV-algebra.

P> Generated by a collection of super operators
{(Jh....T").

» When the operators come close together, their behaviour is
under control via the Operator Product Expansion (OPE)

1
In(Z21)Tn(Z2) ~ Cf Shyr2 D"0Oy(22),
12

» Additional technical conditions (associativity, etc.), can be
used to abstractly classify these algebras.

Mathematically: SUSY Vertex Algebra.
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Meeting point: the sigma model (I)

Consider the N = (1,0) non-linear sigma model with target M.
We use a superspace formalism, meaning that we repackage fields
and their superpartners into superfields.

2Z - .
S[X]:/zdwgw [(g5(X) + By(X)) X' DXT]

» (z,Z) worldsheet coordinates, § Grassmann variable.
> g.p is a metric on M and B is the B-field, so H = dB.

How do geometry and algebra connect?
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Meeting point: the sigma model (II)

» Every characteristic p-form ® of the G-structure gives rise to
a new classical symmetry of the action, called VV-symmetry

€(z,0)
(p—1)!

Secretly, this is because the forms satisfy V™® = 0.

6P X = &7, ., DX%...DX%.

[Howe, Papadopoulc 91, 931, owe, Stojevic 6], lowe, Papadopoulos

» Each symmetry has an associated Noether super current

Ly
J$ == .., DX ... DX?.
p!

> We find that every form produces a classical current

o Wy g0

gg:-‘éfe;?dﬂgh?lteuH Mateo Galdeano SWe-algebras and Gp-structures 10/53



Meeting point: the sigma model (lII)

String theory is a quantum theory and can be studied through a
perturbative expansion around the classical theory. We will choose
the string length /5 = v/2wa/ as our perturbative parameter.

> The SWh-algebra describes the full quantum theory.
> The sigma model describes the classical theory.

Noether currents are classical limits of the quantum operators

g g
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Meeting point: the sigma model (lII)

String theory is a quantum theory and can be studied through a
perturbative expansion around the classical theory. We will choose
the string length /5 = v/2ma/ as our perturbative parameter.

> The SWh-algebra describes the full quantum theory.
> The sigma model describes the classical theory.

Noether currents are classical limits of the quantum operators

g g

The algebra of WW-symmetries:
» is generated by the G-structure,
» and is the classical limit of the S¥W-algebra.
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Our strategy summarised

Worldsheet SW-algebra String background

Extra chiral currents G-structure with torsion

{7,..., 7"} {®t, ..., 0"}, H

Classical limit W-symmetry

Non-linear o-model

W-symmetry Noether currents

{7a,..., 74}
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Warm-up: Virasoro algebra

g:-‘{fe(;?dngh?:euu Mateo Galdeano SW-algebras and Gy-structures

13/53



N =1 Virasoro algebra (1)

We are familiar with the (super) A/ = 1 Virasoro algebra:

3

C
[Lma Ln] = (m - n)Lm+n + E(m - m)(sm—i—n,Oa
2 1

m C
[Lma Gr] = (E - r)Gm+r7 {Gn Gs} = 2Lr+s + g(r - Z)(SrJrs,Oa

where ¢ is the central charge, and L,,,, G, are the Fourier modes of
the stress tensor T and the supersymmetry generator G

:ZLmz’"_z, G(z) = Z G z' %,

meZ reZ+1 5
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N =1 Virasoro algebra (lIl)

The can be combined into a super stress tensor T
1
T(Z)= —EG(Z) +0T(2),

and the commutation relations can be encoded into a super OPE

c 1 3 617 012
673 toz
6 Ziy 2 Z75

T(21)T(22) ~ T(Z2) + 55— DT(Z2) + 7 °0T(Z) + -+

2713

How does this manifest in the classical theory? J
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Superconformal symmetry

The action is invariant under superconformal transformations
T yi i1 i
0 X' = —e0X' — EDeDX )

the associated Noether current is the classical super stress tensor

Ta(2) = —5Ga(2) +0 T (2),

where for example G = i (G;Ox'1/ + %&Hijk’(/}i"/)jl/fk)-

What is the associated classical algebra of symmetries? )
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From classical symmetries to OPEs (1)

» The commutator of two superconformal transformations is
another superconformal transformation
T sTixi — 5T yi
[0, 051X =65 X",
where €3 = €19¢p — Oeq €5 + §D€1 De, .
» Using the conformal Ward identity, we can rewrite
infinitesimal transformations as contour integrations:

ST XQ) = o fg 4Z e3(2)Ta (2)X(0).

» The same holds for the commutator

[67,671X'(¢) = ?{ dZZ]{ da - e1(Z1)ea(22) Ta (Z21)Ta.(22)

¢ 27'['/

X'(),
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From classical symmetries to OPEs (1)

After integrating by parts, the classical OPE can be read off.

30 1 0
Ta(Z)Ta(Z) ~ 2 Z22T4(22) + ——DTa(2Ze) + =20Ta(Z) + . . ..

272 271> Z12
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From classical symmetries to OPEs (1)

After integrating by parts, the classical OPE can be read off.

360 1 0
Ta(Z2)Ta(22) ~ 222 Ta(Z2) + =——DTa(2) + i0ﬁ|.(22) +....

272 2715
We recover the A/ = 1 Virasoro algebra. ..
except for the central charge term! J

» This was to be expected: the classical OPE should only
reproduce the classical version of the algebra, which in this
case is the Witt algebra. The central charge is a quantum
object and as such it does not appear.
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S)W-algebras from

G-structures
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Finding the SW-algebra candidate

> Let M be a Riemannian manifold equipped with a

G-structure with characteristic forms {®!, ... &7}
» Each form ®' generates a WW-symmetry.
> We have a set of classical currents {7, 7%,.... 7]}

The underlying S)V-algebra must be generated by
a,7,7%...,0".
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Commutator

[Howe, Stojevic 06], [Howe, Papadopoulos, Stojevic
» The commutator of two VW-symmetries is
o sUiyi _ sUyi | sNyi | sTV yi
[06,5 0, ) X" = 0, X' + 0 X' + 00, X' J

It depends on contractions of the forms and the torsion:
_ 1 @i .
= P AV,
1o
V = o SUAY
N =L (ij A DI AWK - 2(—1)P

N

ot HAV)

» The 67V symmetry is new and has a composite current

JTe =-TJ®.
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Classical super OPE

Analogous computation to the superconformal case provides a
formula for the “classical” terms in the associated OPEs. J

U
I (Z) T (Z2) ~ (-1)P ey ~7c|25222)

-1 012
_1)ptL <p >1 DIY(Z
Herrta (B ) 22 0gl(z)

0
+ (-1 v 5 TN (22)
12

2 012 y
v <d— (P+q—4)> 712721. ()T (Z2)+ ... .

» The algebra is described purely by geometric data.
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Our strategy

In each case we must:
» Identify characteristic forms of the G-structure.
» Propose candidate families of SW-algebras.

» Compare classical and quantum OPEs.

We hope to identify terms and provide a geometrical meaning to
the coefficients of the algebra. J
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Example: Go-structures

ol ?IeUH Mateo Galdeano

SW-algebras and Gy-structures

24/53



What is known?

» In the absence of torsion, the correspondence is well-known:

Trivial holonomy «——— Free algebra
U(n)-holonomy «—— N = 2 Virasoro algebra
SU(n)-holonomy «——— Odake algebra
Gy-holonomy «—— G, Shatashvili-Vafa
Spin(7)-holonomy «——— Spin(7) Shatashvili-Vafa

: 21, [Blumenhagen 92], [Figueroa-O’Farrill 97]
» In the presence of torsion, some results for the N’ =2 and G,
cases. For example, a deformed G, Shatashvili-Vafa algebra
can be obtained in AdS3 x §3 x T4 backgrounds.

sul, De Arriba de La He Garcia-Fernandez 20,
berdiel /1\
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Warm-up example

Let M = R”, and take H = 0.
» We have n covariantly constant one-forms ¢! = dx/.
» This gives n classical currents J7.

» Immediate to compute:

U/_/:(SU]., V=0, N=0.
» The classical OPE is:
1)
TNZ)TF(Z2) ~ =5+
12

We do get back the OPEs of n free super fields, as we should!J
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Go-structures

A Gy-structure on a seven-dimensional Riemannian manifold M is
determined by the associative three-form ¢

0 = dX246 _ dX235 _ dX145 _ dX136 + dX127 + dX347 + dX567 )

» It determines a metric and an orientation on M.
> Gives rise to coassociative four-form 1) = .

There are four torsion classes associated with a Go-structure:
dpo=710%+371 A p+ 73, dy =41 Ap+ *7>.

Demanding 7 = 0, we find the torsion

1
HZET()QO—T;[_I’(/)—T3.

ﬂ'e'i,‘{?gfdﬂg’h?,erH Mateo Galdeano SW-algebras and Gp-structures 27/53



G, algebra candidates

» We have a 3-form ¢ and a 4-form 1.
» Look at algebras generated by an operator 7% of conformal
weight % and an operator 7V of conformal weight % =2.

The algebra must be a member of the SW(%, %,2) family. This
family depends on two free parameters:
» ¢, the central charge.

> )\, measuring the self-coupling C,.

[Blumenhagen 91]

Are all these algebras allowed? What is the meaning of \? )
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G, classical OPEs

The results of the classical computation are:

TN TN T | e |ev
VAIIVAT VAT B S R
JENTL - - gl -1 - |12
Jh T8 | - | —I8TE | TL | - | 5ol | 12

Watch out for that scalar torsion class!!!
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G, comparison (1)

Now for the OPE comparison:
» OPEs Jj J and jcgfjg’lb fix the normalisation.
» The only remaining OPE is

0 0
TR T(Z) ~ > bsro ZoTETE 852 T T4 +

However, in the quantum OPE the number 8 is instead 12.

A puzzle! Is everything lost?
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G, comparison (1)

Now for the OPE comparison:
» OPEs Jj J and jcgfjg’lb fix the normalisation.
» The only remaining OPE is

0 0
TR T(Z) ~ > bsro ZoTETE 852 T T4 +

However, in the quantum OPE the number 8 is instead 12.

A puzzle! Is everything lost?

> No.
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G, comparison (I1)

» Within the two parameter family, some algebras are special:
they admit a tricritical Ising model as a subalgebra.

» Through some representation theory arguments, this means
there are some distinguished operators that can be quotiented
out from the theory: null fields.

» In this situation, the coefficient 8 (or 12) is only well-defined
up to null fields.
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G, comparison (I1)

» Within the two parameter family, some algebras are special:
they admit a tricritical Ising model as a subalgebra.

» Through some representation theory arguments, this means
there are some distinguished operators that can be quotiented
out from the theory: null fields.

» In this situation, the coefficient 8 (or 12) is only well-defined
up to null fields.

Solution to the puzzle: a matching with the classical algebra is
possible only in a particular locus.
In this situation, a geometric interpretation is possible.
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G, comparison (I11)

» What is this distinguished locus? Surprise surprise, it is the
family found by Fiset and Gaberdiel, obtained by setting:

21 6 A2_32(3/<—2)2
T2 Tk " T K2(49k —30)°

where k is the parameter of the family.

Physical interpretation: \/k gives you the radius Rags of the AdS3
spacetime component of the string background in units of ¢

Rags \°
k=2 .
" < 65 >

The limit kK — oo recovers a flat spacetime.
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G, comparison (1V)

Working with the deformed Shatashvili-Vafa algebra, we can
compare the remaining OPE coefficient. This requires an
expansion in powers of £5 and yields

16 1 n
= —————
V7 T Rags

This recovers the supergravity expectation!

o(%2).
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G, conclusion

Note that the central charge of the algebra is now:

21 49 ,, 3
- 2 127_(){5—’_0({5)7

corrections to the central charge proportional to H? are expected
in supergravity, and we confirm that suspicion.

» Our classical computation selects a distinguished
one-parameter locus within all the space of amenable
SW-algebras.

» The parameter is directly tied to the scalar torsion class.
» Torsionless limit recovers the special holonomy case!
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Vertex algebra perspective
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Reformulating the statements

To make these physical ideas mathematically rigorous, we need to
understand several concepts:

> SUSY Vertex Algebras: these are SWW-algebras.
» Courant algebroids: the most convenient language to describe
the geometry of supergravity.

» The chiral de Rham complex: a sheaf of SUSY Vertex
Algebras that can be defined from Courant algebroids.

“Having an S)V-algebra underlying a supergravity solution”
then means
“finding an embedding of a SUSY Vertex Algebra into sections of
the corresponding chiral de Rham complex”.
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Vertex algebras (1)

A vertex algebra (V,|0), T, Y(-, 2)) is:
» A vector superspace V = Vy @ V; (space of states).
» An even vector |0) € Vg (vacuum vector).
» An even endomorphism T: V — V (infinitesimal translation).
> A parity-preserving linear map Y: V — End(V)[[z%]]
(state-field correspondence).

In addition, three axioms must be satisfied (vacuum, translation
covariance and locality).
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Where are the OPEs?

In this language, a field is a formal sum

a(z):=Y(a,2) =) amz ",
nez
with Fourier modes a(,y € End(V).

» Given two fields a(z), b(w), we can write a(z)b(w) as a
Laurent expansion in (z — w).
» Ignoring the regular part, this defines the OPE of two fields:

a(z)b(w) ~ Z M

n>0 (Z N W)n+1 '

We will call ai,)b the n-product of a and b.
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SUSY vertex algebra

A SUSY vertex algebra is a tuple (V,]0), S, Y(-,z)), where
> (V,]0), T = S2,Y(-,2)) is a vertex algebra,
» and S: V — V is an odd linear map which is furthermore a
derivation for the n-products.

» The algebra is conformal if it includes a field L(z) satisfying
the Virasoro algebra.

» |t is superconformal if it also has the superpartner G(z).
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How to operate in practice

The information of the OPEs can be recast as the \-bracket.
Furthermore, a normally ordered product can be defined

)\n
[a,\b] = E ma(n)b, :ab: = a(_l)b.
n€zZ

It turns out this is all one needs to define a vertex algebra:

In practice, we just need to specify the generating fields, their
A-bracket and the action of S to define the vertex algebra. J
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Example: the Neveu—Schwarz algebra

The Neveu-Schwarz algebra (which a physicist would call the
N =1 super-Virasoro algebra) with central charge c is the SUSY
vertex algebra freely generated by the C[T]-module

CGaCL,
the odd derivation S defined by
SG=2L, 25L=TG,

and the \-brackets

3

[Lyl] = (T+2)\)L+c1\—2, [L,G] = <T+z>\> G.
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More examples

» Given a quadratic Lie algebra (g, (:|-)) and a scalar k € C, one
can define in a similar way the universal superaffine vertex
algebra with level k associated to g, denoted Vk(gsupe,).

» One can also similarly define the deformed Shatashvili-Vafa
algebra SV, with parameter a € C.

» This provides a precise abstract mathematical definition of the
G, algebra we encountered earlier.
» The parameter a is related to the k we used before via

a '\/2
= | —_—
k)

and a — 0 recovers the Shatashvili-Vafa algebra.
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Chiral de Rham complex (1)

Given M a manifold, we can construct a SUSY vertex algebra
Q$B(U) on each open subset U by taking the C[T]-module

(C(V) @ (X(V) @ QY (V) @ N(x(V) © Q'(V))) @ C[T],
with Tf = df, the odd derivation S defined by
Sf=ndf, SNX:=X, SMn:=n,
for X € X(U), n € Q1(U), and the \-brackets

[X)\f]:X(f)7 [XAHY]:H[X’ Y]’ [X)\Y]:[X) Y]’
[XalMn] = NLxn, [Xan] = Lxn + Aexn,  [MX\Mn] = oxn

One also has to quotient by some ideals, but we skip this.
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Chiral de Rham complex (II)

For a manifold M, the assignment U — QSi(U) defines a sheaf of
SUSY vertex algebras QCMh called the chiral de Rham complex.

The presence of X(U) ® Q(U) should remind us a lot of
generalised geometry...and in fact:

» There is a canonical procedure to construct a chiral de Rham
complex from a Courant algebroid.
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Courant algebroids

A Courant algebroid is a quadruple (E, (-,-), [-,:], 7) with
» E a vector bundle over M,
» (-,-) a non-degenerate symmetric bilinear form on E,
» [,-]: E x E — E a bilinear map on E,
» and 7 : E — TM a bundle map,
satisfying some additional conditions (Jacobi, etc). We always

have the following short sequence of vector bundles:

0 T"MSES TM 0.

We call E exact if this short sequence is exact.

Any exact Courant algebroid E on M is isomorphic to the
generalised tangent bundle for some closed H € Q3M.
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Generalised tangent bundle

The generalised tangent bundle (TM, (-,-), [, -]n, 7) is given by
» TM=TMea T*M,
» (-,-) the natural symmetric bilinear form
X+ &Y +m) =3 mX)+£(Y)),
where X, Y € [(TM), £&,n e T(T*M).
» [, -]y the H-twisted Dorfman bracket
[X+&Y +nly =X, Y]+Lxn — tydé + H(X, Y, ).
for some closed H € Q3M,
» 7 :TM — TM is the natural projection to TM.
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The Lie group case

Assume now M = K is a compact Lie group and focus on
left-invariant exact Courant algebroids on K.

» Left-invariant sections define a quadratic Lie algebra (with the
induced bracket and pairing)

g=rTMK =tat,
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The Lie group case

Assume now M = K is a compact Lie group and focus on
left-invariant exact Courant algebroids on K.

» Left-invariant sections define a quadratic Lie algebra (with the
induced bracket and pairing)

g=T(TMK =t e,

There is an embedding

V2(gsuper) = T(K, QR(TM))

of the superaffine vertex algebra V2(gsuper) of level k = 2 on the
space of global sections I'(K, Q®(TK)) of Q(TK).
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Explicit realisations

We focus on certain supergravity backgrounds built from
7-dimensional group manifolds with different Go-structures.

)

We have constructed explicit embeddings of the SV, algebra in the
corresponding superaffine vertex algebra Vk(gsupe,), inducing
embeddings into the global sections of the chiral de Rham complex.

> S3 x T%, two Gy-structures.

» As a torus bundle over Hopf surface: 79 = 0, algebra is SVj.
» As a sphere bundle over four tori: 79 # 0, algebra is SV,.

> S3 x S3 x T, three Gy-structures.
» Case 1: 70 =0, 73 # 0, algebra is SVj.
» Case 2: 79 # 0, ;. =0, algebra is SV,.
» Case 3: 79 # 0, 71 # 0, algebra is SV,.
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A conjecture

Let M be a 7-dimensional Riemannian manifold admitting a
solution to the Killing spinor equations with parameter A € R and
closed NS flux H (that is, a solution of NS-NS supergravity):

V=0, (W“—;c) =Xy, dH=0,

for a real spinor 7, a three-form H € Q3, and a one-form (e QL.
Here, VT and W1/3 are the spin connection and Dirac operator of
the connections with skew torsion H and %H, respectively.
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A conjecture

Let M be a 7-dimensional Riemannian manifold admitting a
solution to the Killing spinor equations with parameter A € R and
closed NS flux H (that is, a solution of NS-NS supergravity):

1

V+77:Oa <V1/3_§C)77:)\777 dH:07
for a real spinor 7, a three-form H € Q3, and a one-form ¢ € Q*.
Here, VT and Wl/a are the spin connection and Dirac operator of
the connections with skew torsion H and %H, respectively.

Then, its chiral de Rham complex admits an embedding of the
SUSY vertex algebra SV,, where the value of a is determined by
the eigenvalue A of the Dirac spinor 7.
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Conclusion and outlook
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Conclusions

» We find a procedure to compute classical OPEs in the
worldsheet algebra in terms of geometric data in the target.

» Comparing classical and quantum algebras gives an
interpretation of the parameters in terms of torsion classes.

» Generically, the presence of torsion modifies the OPEs and the
algebra differs from the one found for special holonomy.

» We find mathematical evidence for our results using the
formalism of vertex algebras.
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Open questions

» Can we understand all the quantum effects on the OPEs?
» Can we find algebras for backgrounds with RR fluxes?

» Can we use the algebras with torsion to obtain new geometric
information (e.g. about mirror symmetry)?

» Can we prove the embedding conjecture?

» Can we do something similar for particles or membranes?
» Hopefully more on this soon, with Hyungrok and Leron!
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Thank you!
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