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One-slide summary (5 Ws & H)

▶ Who and when?

Xenia, Enrico, Andoni, Mario and myself. Earlier this year.

▶ What do we study?

We study certain superconformal algebras, called SW-algebras, and
their correspondence to manifolds with (torsionful) G -structures.

▶ Where do we study it?

Manifolds with Spin(7), G2, SU(2), and SU(3)-structures.
▶ How do we study it?

We look at the algebra of symmetries of a classical σ-model, which
is the classical limit of the SW-algebra. We exploit this connection
to give a geometric interpretation of the algebra coefficients.

▶ Why do we study it?

Interplay between geometry and CFTs (e.g. mirror symmetry).
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Motivation: the general idea

Mateo Galdeano SW-algebras and G2-structures 4/53



Setup: sigma model approach

String theory (type II or heterotic) as a sigma-model.WƌĞƐĞŶƚĂƚŝŽŶ�ĚƌĂǁŝŶŐƐ
Ϭϴ�EŽǀĞŵďĞƌ�ϮϬϮϭ ϭϴ͗ϯϲ

Σ −−−−→M ,

▶ Target: d-dimensional manifold with a G -structure.

▶ Worldsheet: 2-dimensional superconformal field theory.

What is the relation between them and why do we care?
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Why is this interesting/useful?

▶ Interplay between geometry and 2d CFTs.
[Odake 89], [Shatashvili, Vafa 94], [Figueroa-O’Farrill 97]

▶ Worldsheet algebra provides information about the target
geometry and vice versa.
▶ Example: connected sum construction as algebra inclusions.

[Fiset 18], [Fiset, G. 21], [G. 23]

▶ Mirror symmetry.
▶ Description of mirror map.
▶ Also for G2 and Spin(7) manifolds.

[Lerche, Vafa, Warner 89], [Gaberdiel, Kaste 04], [Braun, Majumder, Otto 19]

▶ Can be made mathematically rigorous through the chiral de
Rham complex and vertex algebra language.

[Ekstrand, Heluani, Kallen, Zabzine 09, 13], [Rodrı́guez Dı́az 16]

[Álvarez-Cónsul, De Arriba de La Hera, Garcia-Fernandez 20, 23]
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The geometry side

The target manifold is equipped with a G -structure.

▶ Determined by a collection of characteristic tensors:

{Φ1, . . . ,Φn} .

For example, for a G2-structure {Φ1,Φ2} = {φ,ψ}
▶ Exterior derivatives encode the torsion classes:

dφ = τ0 ψ + 3 τ1 ∧ φ+ ∗τ3 , dψ = 4 τ1 ∧ ψ + ∗τ2 .

▶ We will require the existence of a compatible metric
connection ∇+ with totally skew torsion. This constrains the
torsion classes, which can be used to write the torsion

τ2 = 0 =⇒ H =
1

6
τ0 φ− τ1⌟ψ − τ3 .
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The algebra side

The worldsheet supports an SW-algebra.

▶ Generated by a collection of super operators

{J 1, . . . ,J n} .

▶ When the operators come close together, their behaviour is
under control via the Operator Product Expansion (OPE)

Jhi (Z1)Jhj (Z2) ∼ C k
ij

1

Z
hijk−r/2
12

DrOk(Z2) ,

▶ Additional technical conditions (associativity, etc.), can be
used to abstractly classify these algebras.

Mathematically: SUSY Vertex Algebra.
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Meeting point: the sigma model (I)

Consider the N = (1, 0) non-linear sigma model with targetM.
We use a superspace formalism, meaning that we repackage fields
and their superpartners into superfields.

S [X ] =

∫
Σ

d2z dθ
2 ℓ2s

[
(gij(X ) + Bij(X )) ∂̄X iDX j

]
,

▶ (z , z̄) worldsheet coordinates, θ Grassmann variable.

▶ gab is a metric onM and B is the B-field, so H = dB.

How do geometry and algebra connect?
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Meeting point: the sigma model (II)

▶ Every characteristic p-form Φ of the G -structure gives rise to
a new classical symmetry of the action, called W-symmetry

δΦϵ X
a =

ϵ(z , θ)

(p − 1)!
Φa

a2···ap DX
a2 · · ·DX ap .

Secretly, this is because the forms satisfy ∇+Φ = 0.
[Howe, Papadopoulos 91, 93], [Howe, Stojevic 06], [Howe, Papadopoulos, Stojevic 10]

▶ Each symmetry has an associated Noether super current

J Φ
cl. =

1

p!
Φa1···ap DX

a1 · · ·DX ap .

▶ We find that every form produces a classical current

Φi W−→ J i
cl. .
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Meeting point: the sigma model (III)

String theory is a quantum theory and can be studied through a
perturbative expansion around the classical theory. We will choose
the string length ℓs =

√
2πα′ as our perturbative parameter.

▶ The SW-algebra describes the full quantum theory.

▶ The sigma model describes the classical theory.

Noether currents are classical limits of the quantum operators

J i cl.−→ J i
cl. .

The algebra of W-symmetries:

▶ is generated by the G -structure,

▶ and is the classical limit of the SW-algebra.
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Our strategy summarised
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Warm-up: Virasoro algebra
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N = 1 Virasoro algebra (I)

We are familiar with the (super) N = 1 Virasoro algebra:

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm+n,0 ,

[Lm,Gr ] = (
m

2
− r)Gm+r , {Gr ,Gs} = 2Lr+s +

c

3
(r2 − 1

4
)δr+s,0 ,

where c is the central charge, and Lm, Gr are the Fourier modes of
the stress tensor T and the supersymmetry generator G

T (z) =
∑
m∈Z

Lm zm−2 , G (z) =
∑

r∈Z+ 1
2

Gr z
r− 3

2 ,
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N = 1 Virasoro algebra (II)

The can be combined into a super stress tensor T

T (Z ) = −1

2
G (z) + θT (z) ,

and the commutation relations can be encoded into a super OPE

T (Z1)T (Z2) ∼
c

6

1

Z 3
12

+
3

2

θ12
Z 2
12

T (Z2) +
1

2Z12
DT (Z2) +

θ12
Z12

∂T (Z2) + · · · .

How does this manifest in the classical theory?
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Superconformal symmetry

The action is invariant under superconformal transformations

δTϵ X
i = −ϵ ∂X i − 1

2
DϵDX i ,

the associated Noether current is the classical super stress tensor

Tcl.(Z ) = −
1

2
Gcl.(z) + θTcl.(z) ,

where for example Gcl. = i
(
Gij∂x

iψj + 1
3!ℓsHijkψ

iψjψk
)
.

What is the associated classical algebra of symmetries?
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From classical symmetries to OPEs (I)

▶ The commutator of two superconformal transformations is
another superconformal transformation

[δTϵ1 , δ
T
ϵ2 ]X

i = δTϵ3 X
i ,

where ϵ3 = ϵ1∂ϵ2 − ∂ϵ1 ϵ2 + 1
2Dϵ1Dϵ2 .

▶ Using the conformal Ward identity, we can rewrite
infinitesimal transformations as contour integrations:

δTϵ3 X
i (ζ) = − 1

2πi

∮
ζ

dZ ϵ3(Z )Tcl.(Z )X i (ζ) ,

▶ The same holds for the commutator

[δTϵ1 , δ
T
ϵ2 ]X

i (ζ) =

∮
ζ

dZ2

2πi

∮
ζ2

dZ1

2πi
ϵ1(Z1)ϵ2(Z2) Tcl.(Z1)Tcl.(Z2)X

i (ζ) ,
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From classical symmetries to OPEs (II)

After integrating by parts, the classical OPE can be read off.

Tcl.(Z1)Tcl.(Z2) ∼
3

2

θ12
Z 2
12

Tcl.(Z2) +
1

2Z12
DTcl.(Z2) +

θ12
Z12

∂Tcl.(Z2) + . . . .

We recover the N = 1 Virasoro algebra. . .
except for the central charge term!

▶ This was to be expected: the classical OPE should only
reproduce the classical version of the algebra, which in this
case is the Witt algebra. The central charge is a quantum
object and as such it does not appear.
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SW-algebras from
G -structures
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Finding the SW-algebra candidate

▶ LetM be a Riemannian manifold equipped with a
G -structure with characteristic forms {Φ1, . . . ,Φn}.

▶ Each form Φi generates a W-symmetry.

▶ We have a set of classical currents {T ,J 1
cl., . . . ,J n

cl.}

The underlying SW-algebra must be generated by

⟨1, T ,J 1, . . . ,J n⟩ .

Mateo Galdeano SW-algebras and G2-structures 20/53



Commutator

[Howe, Stojevic 06], [Howe, Papadopoulos, Stojevic 10]

▶ The commutator of two W-symmetries is

[δΦϵ1 , δ
Ψ
ϵ2 ]X

i = δUϵUX
i + δNϵNX

i + δT V
ϵT V

X i .

It depends on contractions of the forms and the torsion:

U = 1
cU

Φi ∧Ψi ,

V = 1
cV

Φij ∧Ψij ,

N = ℓs
cN

(
Hjk ∧ Φj ∧Ψk − 2(−1)p cV

d−(p+q−4) H ∧ V
)
,

▶ The δT V symmetry is new and has a composite current

J T Φ = −T J Φ .
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Classical super OPE

Analogous computation to the superconformal case provides a
formula for the “classical” terms in the associated OPEs.

J Φ
cl.(Z1)J Ψ

cl.(Z2) ∼ (−1)p+1 cU
J U
cl.(Z2)

Z12

+ (−1)p+1 cU

(
p − 1

p + q − 2

)
θ12
Z12

DJ U
cl.(Z2)

+ (−1)p cN
θ12
Z12
J N
cl.(Z2)

+ cV

(
2

d − (p + q − 4)

)
θ12
Z12
Tcl. (Z2)J V

cl. (Z2) + . . . .

▶ The algebra is described purely by geometric data.

Mateo Galdeano SW-algebras and G2-structures 22/53



Our strategy

In each case we must:

▶ Identify characteristic forms of the G -structure.

▶ Propose candidate families of SW-algebras.

▶ Compare classical and quantum OPEs.

We hope to identify terms and provide a geometrical meaning to
the coefficients of the algebra.
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Example: G2-structures
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What is known?

▶ In the absence of torsion, the correspondence is well-known:

Trivial holonomy←−−−→ Free algebra

U(n)-holonomy←−−−→ N = 2 Virasoro algebra

SU(n)-holonomy←−−−→ Odake algebra

G2-holonomy←−−−→ G2 Shatashvili–Vafa

Spin(7)-holonomy←−−−→ Spin(7) Shatashvili–Vafa

[Odake 89], [Shatashvili, Vafa 94]
[Figueroa-O’Farrill, Schrans 91, 92], [Blumenhagen 92], [Figueroa-O’Farrill 97]

▶ In the presence of torsion, some results for the N = 2 and G2

cases. For example, a deformed G2 Shatashvili-Vafa algebra
can be obtained in AdS3 × S3 × T4 backgrounds.

[Álvarez-Cónsul, De Arriba de La Hera, Garcia-Fernandez 20, 23]
[Fiset, Gaberdiel 21]
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Warm-up example

LetM = Rn, and take H = 0.

▶ We have n covariantly constant one-forms σI = dx I .
▶ This gives n classical currents J σI .
▶ Immediate to compute:

UIJ = δIJ1 , V = 0 , N = 0 .

▶ The classical OPE is:

J σI (Z1)J σJ (Z2) ∼ −
δIJ
Z12

+ . . . ,

We do get back the OPEs of n free super fields, as we should!
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G2-structures

A G2-structure on a seven-dimensional Riemannian manifoldM is
determined by the associative three-form φ

φ = dx246 − dx235 − dx145 − dx136 + dx127 + dx347 + dx567 .

▶ It determines a metric and an orientation onM.

▶ Gives rise to coassociative four-form ψ = ∗φ.
There are four torsion classes associated with a G2-structure:

dφ = τ0 ψ + 3 τ1 ∧ φ+ ∗τ3 , dψ = 4 τ1 ∧ ψ + ∗τ2 .

Demanding τ2 = 0, we find the torsion

H =
1

6
τ0 φ− τ1⌟ψ − τ3 .
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G2 algebra candidates

▶ We have a 3-form φ and a 4-form ψ.

▶ Look at algebras generated by an operator J φ of conformal
weight 3

2 and an operator J Ψ of conformal weight 4
2 = 2.

The algebra must be a member of the SW(32 ,
3
2 , 2) family. This

family depends on two free parameters:

▶ c, the central charge.

▶ λ, measuring the self-coupling Cφ
φφ.

[Blumenhagen 91]

Are all these algebras allowed? What is the meaning of λ?
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G2 classical OPEs

The results of the classical computation are:

J 1
cl. J 2

cl. J U
cl. J N

cl. J V
cl. cU cN cV

J φcl. J φcl. J ψcl. - - 6 - -

J φcl. J ψcl. - - J φcl. - - 12

J ψcl. J ψcl. - −J φcl.J
ψ
cl. J ψcl. - 2

3 τ0ℓs 12

Watch out for that scalar torsion class!!!
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G2 comparison (I)

Now for the OPE comparison:

▶ OPEs J φcl.J
φ
cl. and J

φ
cl.J

ψ
cl. fix the normalisation.

▶ The only remaining OPE is

J ψcl.(Z1)J ψcl.(Z2) ∼ −
2

3
ℓsτ0

θ12
Z12
J φcl.J

ψ
cl. + 8

θ12
Z12
Tcl.J

ψ
cl. + . . . .

However, in the quantum OPE the number 8 is instead 12.

A puzzle! Is everything lost?

▶ No.
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G2 comparison (II)

▶ Within the two parameter family, some algebras are special:
they admit a tricritical Ising model as a subalgebra.

▶ Through some representation theory arguments, this means
there are some distinguished operators that can be quotiented
out from the theory: null fields.

▶ In this situation, the coefficient 8 (or 12) is only well-defined
up to null fields.

Solution to the puzzle: a matching with the classical algebra is
possible only in a particular locus.

In this situation, a geometric interpretation is possible.
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G2 comparison (III)

▶ What is this distinguished locus? Surprise surprise, it is the
family found by Fiset and Gaberdiel, obtained by setting:

c =
21

2
− 6

k
, λ2 =

32(3k − 2)2

k2(49k − 30)
,

where k is the parameter of the family.

Physical interpretation:
√
k gives you the radius RAdS of the AdS3

spacetime component of the string background in units of ℓs

k = 2π

(
RAdS

ℓs

)2

.

The limit k →∞ recovers a flat spacetime.
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G2 comparison (IV)

Working with the deformed Shatashvili–Vafa algebra, we can
compare the remaining OPE coefficient. This requires an
expansion in powers of ℓs and yields

τ0 =
1√
π

6

7

1

RAdS
+ O(ℓ2s ) .

This recovers the supergravity expectation!
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G2 conclusion

Note that the central charge of the algebra is now:

c =
21

2
− 49

12
τ20 ℓ

2
s + O(ℓ3s ) ,

corrections to the central charge proportional to H2 are expected
in supergravity, and we confirm that suspicion.

▶ Our classical computation selects a distinguished
one-parameter locus within all the space of amenable
SW-algebras.

▶ The parameter is directly tied to the scalar torsion class.

▶ Torsionless limit recovers the special holonomy case!
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Vertex algebra perspective
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Reformulating the statements

To make these physical ideas mathematically rigorous, we need to
understand several concepts:

▶ SUSY Vertex Algebras: these are SW-algebras.

▶ Courant algebroids: the most convenient language to describe
the geometry of supergravity.

▶ The chiral de Rham complex: a sheaf of SUSY Vertex
Algebras that can be defined from Courant algebroids.

“Having an SW-algebra underlying a supergravity solution”
then means

“finding an embedding of a SUSY Vertex Algebra into sections of
the corresponding chiral de Rham complex”.
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Vertex algebras (I)

A vertex algebra (V , |0⟩ ,T ,Y (·, z)) is:
▶ A vector superspace V = V0 ⊕ V1 (space of states).

▶ An even vector |0⟩ ∈ V0 (vacuum vector).

▶ An even endomorphism T : V → V (infinitesimal translation).

▶ A parity-preserving linear map Y : V → End(V )[[z±]]
(state-field correspondence).

In addition, three axioms must be satisfied (vacuum, translation
covariance and locality).

Mateo Galdeano SW-algebras and G2-structures 37/53



Where are the OPEs?

In this language, a field is a formal sum

a(z) := Y (a, z) =
∑
n∈Z

a(n)z
−n−1 ,

with Fourier modes a(n) ∈ End(V ).

▶ Given two fields a(z), b(w), we can write a(z)b(w) as a
Laurent expansion in (z − w).

▶ Ignoring the regular part, this defines the OPE of two fields:

a(z)b(w) ∼
∑
n≥0

(a(n)b)(w)

(z − w)n+1
.

We will call a(n)b the n-product of a and b.
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SUSY vertex algebra

A SUSY vertex algebra is a tuple (V , |0⟩, S ,Y (·, z)), where
▶ (V , |0⟩,T = S2,Y (·, z)) is a vertex algebra,

▶ and S : V → V is an odd linear map which is furthermore a
derivation for the n-products.

▶ The algebra is conformal if it includes a field L(z) satisfying
the Virasoro algebra.

▶ It is superconformal if it also has the superpartner G (z).
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How to operate in practice

The information of the OPEs can be recast as the λ-bracket.
Furthermore, a normally ordered product can be defined

[aλb] =
∑
n∈Z

λn

n!
a(n)b , :ab: = a(−1)b .

It turns out this is all one needs to define a vertex algebra:

In practice, we just need to specify the generating fields, their
λ-bracket and the action of S to define the vertex algebra.
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Example: the Neveu–Schwarz algebra

The Neveu–Schwarz algebra (which a physicist would call the
N = 1 super-Virasoro algebra) with central charge c is the SUSY
vertex algebra freely generated by the C[T ]-module

CG ⊕ CL ,

the odd derivation S defined by

SG = 2L , 2SL = TG ,

and the λ-brackets

[LλL] = (T + 2λ)L+ c
λ3

12
, [LλG ] =

(
T +

3

2
λ

)
G .
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More examples

▶ Given a quadratic Lie algebra (g, (·|·)) and a scalar k ∈ C, one
can define in a similar way the universal superaffine vertex
algebra with level k associated to g, denoted V k(gsuper).

▶ One can also similarly define the deformed Shatashvili–Vafa
algebra SVa with parameter a ∈ C.
▶ This provides a precise abstract mathematical definition of the

G2 algebra we encountered earlier.
▶ The parameter a is related to the k we used before via

a = i

√
2

k
,

and a→ 0 recovers the Shatashvili–Vafa algebra.
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Chiral de Rham complex (I)

Given M a manifold, we can construct a SUSY vertex algebra
Ωch
M(U) on each open subset U by taking the C[T ]-module

(C∞(U)⊕ (X(U)⊕ Ω1(U))⊕ Π(X(U)⊕ Ω1(U)))⊗ C[T ] ,

with Tf = df , the odd derivation S defined by

Sf := Πdf , SΠX := X , SΠη := η ,

for X ∈ X(U), η ∈ Ω1(U), and the λ-brackets

[Xλf ] = X (f ) , [XλΠY ] = Π[X ,Y ] , [XλY ] = [X ,Y ] ,

[XλΠη] = ΠLXη , [Xλη] = LXη + λιXη , [ΠXλΠη] = ιXη

One also has to quotient by some ideals, but we skip this.
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Chiral de Rham complex (II)

For a manifold M, the assignment U → Ωch
M(U) defines a sheaf of

SUSY vertex algebras Ωch
M called the chiral de Rham complex.

The presence of X(U)⊕ Ω1(U) should remind us a lot of
generalised geometry. . . and in fact:

▶ There is a canonical procedure to construct a chiral de Rham
complex from a Courant algebroid.
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Courant algebroids

A Courant algebroid is a quadruple (E , ⟨·, ·⟩, [·, ·], π) with
▶ E a vector bundle over M,

▶ ⟨·, ·⟩ a non-degenerate symmetric bilinear form on E ,

▶ [·, ·] : E × E → E a bilinear map on E ,

▶ and π : E → TM a bundle map,

satisfying some additional conditions (Jacobi, etc). We always
have the following short sequence of vector bundles:

0→ T ∗M
π∗
→ E

π→ TM → 0 .

We call E exact if this short sequence is exact.

Any exact Courant algebroid E on M is isomorphic to the
generalised tangent bundle for some closed H ∈ Ω3M.
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Generalised tangent bundle

The generalised tangent bundle (TM, ⟨·, ·⟩, [·, ·]H , π) is given by

▶ TM = TM ⊕ T ∗M,

▶ ⟨·, ·⟩ the natural symmetric bilinear form

⟨X + ξ,Y + η⟩ = 1
2 (η(X ) + ξ(Y )) ,

where X ,Y ∈ Γ(TM), ξ, η ∈ Γ(T ∗M).

▶ [·, ·]H the H-twisted Dorfman bracket

[X + ξ,Y + η]H := [X ,Y ]+LXη − ιY dξ + H(X ,Y , ·) .

for some closed H ∈ Ω3M,

▶ π : TM→ TM is the natural projection to TM.
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The Lie group case

Assume now M = K is a compact Lie group and focus on
left-invariant exact Courant algebroids on K .

▶ Left-invariant sections define a quadratic Lie algebra (with the
induced bracket and pairing)

g := Γ(TM)K = k⊕ k∗ ,

Proposition

There is an embedding

V 2(gsuper) ↪→ Γ(K ,Ωch
K (TM))

of the superaffine vertex algebra V 2(gsuper) of level k = 2 on the
space of global sections Γ(K ,Ωch

K (TK )) of Ωch
K (TK ).
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Explicit realisations

We focus on certain supergravity backgrounds built from
7-dimensional group manifolds with different G2-structures.

We have constructed explicit embeddings of the SVa algebra in the
corresponding superaffine vertex algebra V k(gsuper), inducing
embeddings into the global sections of the chiral de Rham complex.

▶ S3 × T4, two G2-structures.
▶ As a torus bundle over Hopf surface: τ0 = 0, algebra is SV0.
▶ As a sphere bundle over four tori: τ0 ̸= 0, algebra is SVa.

▶ S3 × S3 × T1, three G2-structures.
▶ Case 1: τ0 = 0, τ1 ̸= 0, algebra is SV0.
▶ Case 2: τ0 ̸= 0, τ1 = 0, algebra is SVa.
▶ Case 3: τ0 ̸= 0, τ1 ̸= 0, algebra is SVa.
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A conjecture

Let M be a 7-dimensional Riemannian manifold admitting a
solution to the Killing spinor equations with parameter λ ∈ R and
closed NS flux H (that is, a solution of NS-NS supergravity):

∇+η = 0 ,

(
/∇1/3 − 1

2
ζ

)
· η = λ η , dH = 0 ,

for a real spinor η, a three-form H ∈ Ω3, and a one-form ζ ∈ Ω1.

Here, ∇+ and /∇1/3
are the spin connection and Dirac operator of

the connections with skew torsion H and 1
3H, respectively.

Conjecture

Then, its chiral de Rham complex admits an embedding of the
SUSY vertex algebra SVa, where the value of a is determined by

the eigenvalue λ of the Dirac spinor η.
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Conclusion and outlook

Mateo Galdeano SW-algebras and G2-structures 50/53



Conclusions

▶ We find a procedure to compute classical OPEs in the
worldsheet algebra in terms of geometric data in the target.

▶ Comparing classical and quantum algebras gives an
interpretation of the parameters in terms of torsion classes.

▶ Generically, the presence of torsion modifies the OPEs and the
algebra differs from the one found for special holonomy.

▶ We find mathematical evidence for our results using the
formalism of vertex algebras.
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Open questions

▶ Can we understand all the quantum effects on the OPEs?

▶ Can we find algebras for backgrounds with RR fluxes?

▶ Can we use the algebras with torsion to obtain new geometric
information (e.g. about mirror symmetry)?

▶ Can we prove the embedding conjecture?

▶ Can we do something similar for particles or membranes?
▶ Hopefully more on this soon, with Hyungrok and Leron!
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Thank you!
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