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The year is 1998…
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String Theory Community

Excited about: 

Supergravity

Gauge/gravity duality

Me

Excited about: 

Chocolate

Lego
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Baby steps in AdS/CFT

Masses  and couplings  in 
supergravity Lagrangian

m λ
Scaling dimensions  and 

OPE coefficients  
(at large  and strong coupling)

Δ
C

N

Scaling dimensions  and 
OPE coefficients  

(at large  and weak coupling)

Δ
C

N

Compare for half-
BPS operators

How does this 
map work?
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Mapping the basic data
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Baby steps in AdS/CFT
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Where the map fails

• Focus on scalars for this talk


• Scaling dimensions are easy: 


• Bulk coupling  leads to OPE coefficient

m2R2 = Δ(Δ − d)

λ123ϕ1ϕ2ϕ3

C123 =
πd/2λ123
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Pole at  for:

             Extremal


    Super-extremal

Δ3 = Δ1 + Δ2 + 2n
n = 0 ⟶
n = 1,2,… ⟶
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How do we handle (super-)extremal couplings?

• 1998 physicist says: “Who cares!”

• In all maximal SUSY setups, all (super-)extremal bulk couplings vanish 

• New puzzle:  SYM has non-zero extremal OPE coefficients at weak coupling

• Resolution: map between bulk fields and single-trace operators at weak coupling 

is subtle

• This talk: always at strong coupling. No attempt to compare with weakly coupled 

gauge theory


• Maybe a healthy theory cannot have (super-)extremal bulk couplings?!


Now wait 27 years… 

• Nonsense! We have half-maximal AdS/CFT pairs with these bulk couplings non-zero

• So what do we do with them?!

𝒩 = 4
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The point of this talk

1. Non-zero (super-)extremal couplings imply non-trivial mixing between single- and 
double-trace operators in the CFT

• Use the conformal block expansion of 4-point functions to diagnose this, and 

unmix the CFT data in a generic, bottom-up scenario


2. (Super-)extremal couplings appear in a class of 4d  SCFTs, dual to IIB 
SUGRA in  coupled to Yang-Mills on a  brane worldvolume


• Compute the final piece of the gluon 4-point function up to order , by 
summing towers of Witten diagrams with (super-)extremal couplings


• (Super-)extremal couplings induces mixing; we unmix the data


• Determine all stringy corrections at order  using SUSY localisation

𝒩 = 2
AdS5 × S5 AdS5 × S3

1/N2

1/N2
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Part I: Unmixing Data in Bottom-
Up Holography

Unmixing Data in Bottom-
Up Holography



Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

Rishi Mouland

An expansion around generalised free fields

• Simple bottom-up model: a bunch of scalars  in 


• Masses , cubic couplings 


• Set 


• Dual CFT is a generalised free field theory


• All correlation functions determined by Wick contractions 


• Now turn on  with  small


• Dual CFT is now a perturbation of GFFT

ϕi AdSd+1

mi λijk

λijk → 0

⏞
ϕiϕj ∝ δij

λijk ∼ ϵ ϵ

Use same notation for 
dual CFT operators
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Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

Rishi Mouland

Δ3Δ3

• OPE coefficients  encoded in 3-point Witten diagramsCijk ∼ ϵ

The source of the issue

z → 0

ϵλ123

Δ1

Δ2

• Only converges as  if

 	 (and perms)


• -functions give analytic continuation to generic

	 (and perms)


• But even this expression diverges when


z → 0
Δ3 < Δ1 + Δ2

Γ
Δ3 > Δ1 + Δ2

Δ3 = Δ1 + Δ2 + 2n

Diverging Witten diagrams
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The source of the issue
Ways to proceed 1. Use holographic renormalisation to 

regularise and get something sensible


2. Compute something else!z → 0

ϵλ123

Δ1

Δ2

Δ3
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Δ1 Δ2

Δ1 Δ2

Δ3

ϵλ123

ϵλ123

Finite even for 
Δ3 = Δ1 + Δ2 + 2n
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• Suppose we’ve computed ⟨ϕ1ϕ2ϕ1ϕ2⟩ =

CFT data from 4-point functions

1

1 2

2 1

1 2

2

+ + (crossed) + …

• OPE data ϕ1ϕ2 ∼ ∑Δ CΔ𝒪Δ encoded in conformal block expansion 

⟨ϕ1ϕ2ϕ1ϕ2⟩ = f(x)∑
Δ

C2
Δ gΔ(u, v)

Conformal block expansion
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CFT data from 4-point functions
Specialising to dominant operators

• We call an operator “dominant” (with respect to ) if





• GFFT at  means these are precisely the double traces


ϕ1, ϕ2

lim
ϵ→0

CΔ ≠ 0

ϵ → 0
:ϕ1ϕ2 : :ϕ1 □ ϕ2 : :ϕ1 □2 ϕ2 : …

Δ = Δ1 + Δ2 Δ = Δ1 + Δ2 + 2 Δ = Δ1 + Δ2 + 4

• How does the conformal block expansion encode their leading anomalous 
dimensions?
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CFT data from 4-point functions
Anomalous dimensions of dominant operators

• Let’s expand 


• Fact: As  we have 


• Expand  in small  and small . For each dominant operator, must find terms

u → 0 gΔ(u, v) ∼ uΔ/2hΔ(v)

⟨ϕ1ϕ2ϕ1ϕ2⟩ u ϵ

(CΔ)2 = a(0) + 𝒪(ϵ), Δ = Δ(0) + ϵΔ(1) + 𝒪(ϵ2)

• Assume no (super-)extremal couplings and compute Witten diagrams, then expand. For 
each dominant double trace , we indeed find termsΔ(0) = Δ1 + Δ2 + 2n
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The problem with (super-)extremal couplings

• Now suppose , and look at  terms with . 
We find

Δ3 = Δ1 + Δ2 + 2n uΔ(0)/2 Δ(0) = Δ1 + Δ2 + 2n
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• Resolution: mixing between  and , both of which have ϕ3 :ϕ1 □n ϕ2 : Δ = Δ1 + Δ2 + 2n

The assumption that fails:
The only dominant operators are the double traces   ,  :ϕ1 □n ϕ2 n = 0,1,…
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&
+ . . .

"
+ #

!
1

2

'
a(0)∆(1) + ã(0)∆̃(1)
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Unmixing the spectrum

• So now assume we have two dominant operators  with , 
which are linear combinations of  and 


• The relevant terms in the conformal block expansion are now 

𝒪, 𝒪̃ Δ(0) = Δ1 + Δ2 + 2n
ϕ3 :ϕ1 □n ϕ2 :

• Now it’s fine! But only 3 constraints for 4 pieces of data

Resolving the puzzle

≠ 0 = 0 ≠ 0
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Unmixing the spectrum
Determining the mixing matrix
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&
+ . . .

"
+ #

!
1

2

'
a(0)∆(1) + ã(0)∆̃(1)

(
log u+ . . .

"
+ #2

!
1

8

'
a(0)(∆(1))2 + ã(0)(∆̃(1))2

(
log2 u+ . . .

"
+ . . .

$
h∆0(v)

1

(   )*
(   )*

(   )*

14/24

(   )*
Determined by 
Witten diagrams

3 3 + …
• Eigenvalues give you anomalous dimensions 

• Eigenvectors give you OPE coefficients 

Δ(1), Δ̃(1)

a(0), ã(0)

(Roughly)
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Unmixed data for the bottom-up model
• 4-point function has no contribution at order 


• Leading correction to  also comes at order  from 

ϵ
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  Mixing matrix⟶
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• Key lesson: The CFT primaries are a 
non-trivial mix of the generalised free 
field operators!

• Have also determined  independently by holographic renormalisation of the 3-point 
Witten diagram (already done in [Castro, Martinez, ’24] for the extremal ( ) case)
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Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

The theories of interest
• String theory:  D3-branes probing F-theory singularities 


• All but  have constant complexified string coupling . For , we hold  fixed


• At large  have IIB SUGRA on 


• 8d Yang-Mills with gauge group  on fixed point locus 


•  SCFT has symmetries    


• KK reduce to  and look at scalar superprimaries:


• 8d gauge field   in  and 


• 10d graviton   in  and  

N GF = A1, A2, D4, E6, E7, E8

D4 τ D4 τ

N AdS5 × (S5/Γ)
GF AdS5 × S3

𝒩 = 2 GF × SU(2)L × SU(2)R × U(1)R

AdS5

⟶ ϕp (Adj, p
2 −1, p

2 )0 Δ = p

⟶ sk,r (1, r
2 −1, r

2 −1)0 Δ = k = r, r + 2,…

16/24

Flavour R

Short multiplets

Long multiplets
(except ) s2,2

τ ∼ g−1
s ∼ N/λ
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Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

The correlator of interest

• Couplings:

17/24
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(
log2 u+ . . .

"
+ . . .

$
h∆0(v)

)

*〈(φ1□nφ2) (φ1□nφ2)〉 〈(φ1□nφ2)φ3〉
〈φ3 (φ1□nφ2)〉 〈φ3φ3〉

+

, =
1

|x− y|2∆(0)

-
1− #

)

*

+

, log
%
|x− y|2

&
+O(#2)

.
(0.1)

:φ1□nφ2 : ±φ3 (0.2)

∆ = ∆1 +∆2 + 2n± a#+O(#2) (0.3)

C∆ =
1√
2
CGFFT

∆ +O(#) (0.4)

〈φ2φ2φpφp〉conn = (0.5)

1

1
N

2 2

p p
[      	  ]+

1
N2

2 2

p p

2 2

p p

+

Involve only short multiplets 
Bootstrapable! [Alday, Behan, Bissi, Ferrero, Zhou]

Long multiplet exchanges 
unknown

Plus -dependent contact termsτ
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The bulk computation

• Fancy tricks (i.e. bootstrapping using CFT consistency) are not useful here


• Have to do things to “old” way: really just compute the Witten diagrams! 

• Need bulk cubic couplings:
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&
+ . . .

"
+ #

!
1

2

'
a(0)∆(1) + ã(0)∆̃(1)
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&
+ . . .

"
+ #

!
1

2

'
a(0)∆(1) + ã(0)∆̃(1)
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2 2

p p

+ (crossed) =

• Work in Mellin space. Basically Fourier space for cross ratios, (u, v) → (s, t)

Harmonic number
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(0)∆̃(1)
(
log u+ . . .

"
+ #2

!
1

8

'
a
(0)(∆(1))2 + ã
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A more interesting mixing problem
The effect of gluon exchange

• Have mixing, for instance, between


• Gluon double-trace 


• Graviton single-trace 

:ϕ2ϕ2 :
s4,2
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Both flavour and R-symmetry 
singlets with Δ = 4
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Now non-zero due to gluon exchange at order 1/N

• Mixing matrix
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A more interesting mixing problem
Mixing amongst double traces

• Things yet more interesting at higher scaling dimension. For  get mixing between





• Gluon exchange


• Super-extremal graviton exchange 
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Mixing between single and double traces
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Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

All stringy corrections at order  for 1/N2 GF = D4

• Depends on 3 functions: 
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The contact terms we want
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Genus expansion

Different flavour 
structures

• Infinite series of stringy corrections!



Rishi Mouland

Part I: Unmixing Data in Bottom-Up Holography Part II: Application to 4d  Setup𝒩 = 2

All stringy corrections at order  for 1/N2 GF = D4
Fixing using SUSY localisation

• The  theory has a complex exactly marginal coupling 

 Weakly coupled regime described by  gauge theory


• Use SUSY localisation to compute , mass-deformed free energy on 

• Matrix model, evaluated to at finite  and to all perturbative orders in 


• Get integrated constraints of the form




• Enough to completely fix the ! For example,


GF = D4 τ
⟶ USp(2N)

ℱ(mi) S4

τ 1/N

(∂ma
)4ℱ(ma) ∼ ∫ ds dt ⟨ϕ2ϕ2ϕ2ϕ2⟩

ci(τ)
c1(τ) = 6(γ − log(4π)) − 3 log [τ2 |θ3(τ)θ4(τ) |2 ]
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Some final words



Rishi Mouland

Some other stuff we did

• We also compute the flat space limit of our graviton exchange contribution, and 
found an exact match with the known result


• Hot off the press: We have computed these graviton exchanges for some other 
half-maximal setups:


• 3d  theories dual to 


• 6d  theories dual to 

• Interplay between gluon and graviton exchanges qualitatively different due to 

different scalings with  (in some sense, 4d is the most interesting)

𝒩 = 4 AdS4 × (S7/ℤk)
𝒩 = (1,0) AdS7 × (S4/ℤ2)

N
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Thanks!


