

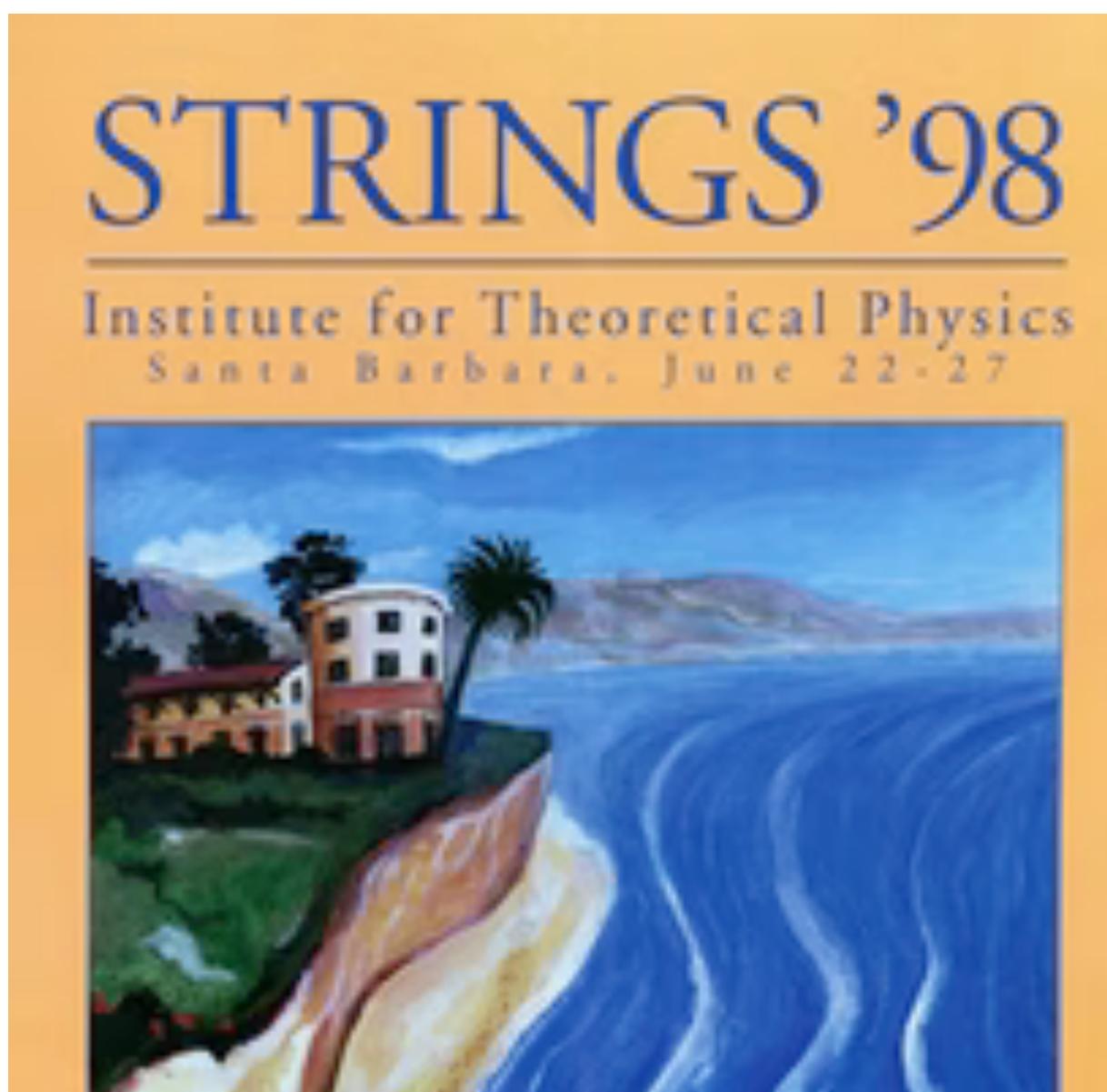
# Extremal Couplings and Gluons in AdS/CFT

Based on:

- *Extremal Couplings and Mixing in AdS/CFT (coming soon!)*  
R. Mouland
- *Extremal couplings, graviton exchange, and gluon scattering in AdS (2505.23948)*  
S. Chester, R. Mouland, J. Van Muiden
- *An as-yet untitled paper (coming soon!)*  
S. Chester, R. Mouland, J. Van Muiden, C. Virally

# The year is 1998...

## String Theory Community



Excited about:

Supergravity  
Gauge/gravity duality

## Me

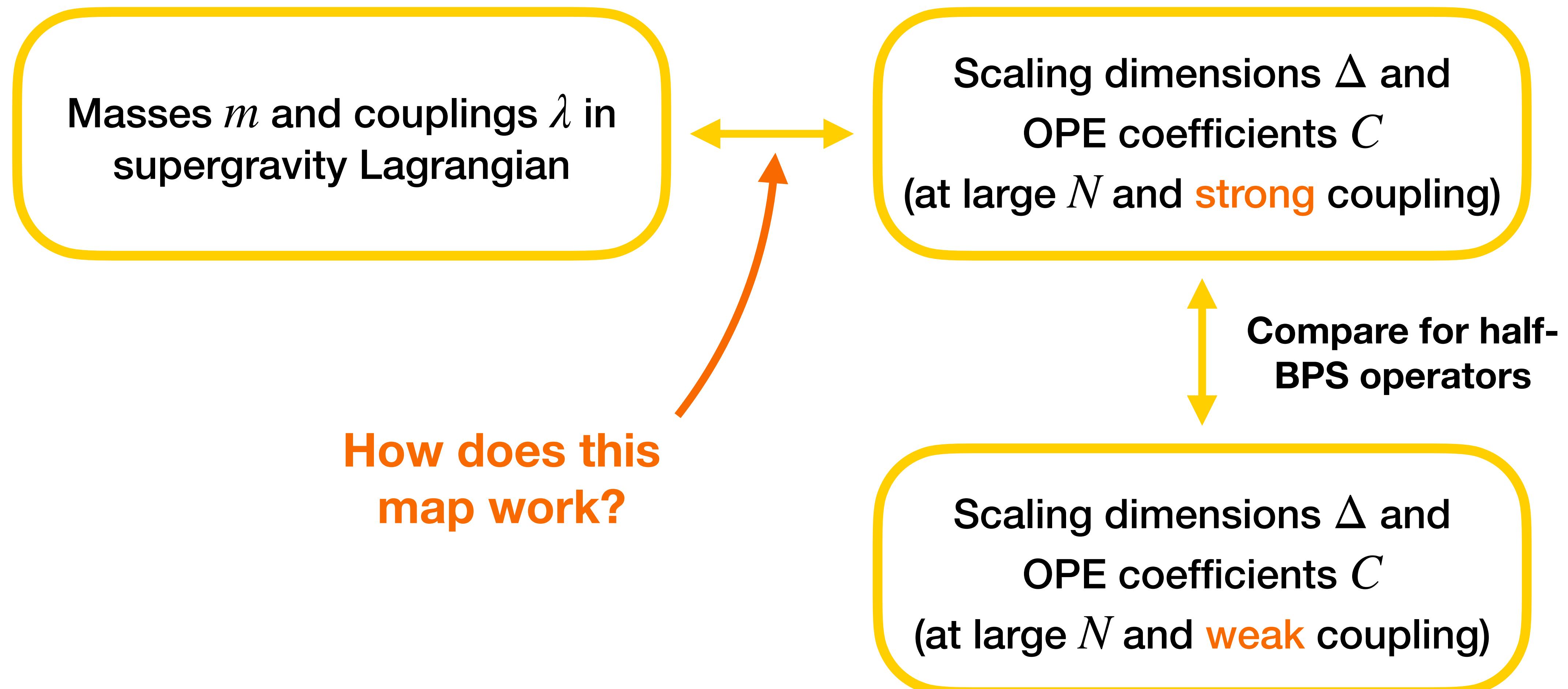


Excited about:

Chocolate  
Lego

# Baby steps in AdS/CFT

## Mapping the basic data

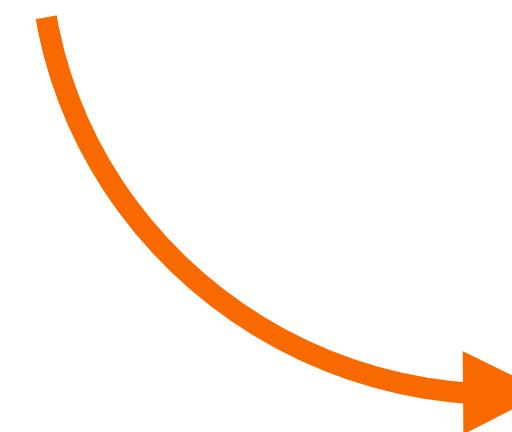


# Baby steps in AdS/CFT

## Where the map fails

- Focus on **scalars** for this talk
- **Scaling dimensions** are easy:  $m^2 R^2 = \Delta(\Delta - d)$
- Bulk coupling  $\lambda_{123}\phi_1\phi_2\phi_3$  leads to **OPE coefficient**

$$C_{123} = \frac{\pi^{d/2} \lambda_{123}}{2\Gamma(\Delta_1)\Gamma(\Delta_2)\Gamma(\Delta_3)} \Gamma\left(\frac{\Delta_1 + \Delta_2 - \Delta_3}{2}\right) \Gamma\left(\frac{\Delta_2 + \Delta_3 - \Delta_1}{2}\right) \Gamma\left(\frac{\Delta_3 + \Delta_1 - \Delta_2}{2}\right) \Gamma\left(\frac{\Delta_1 + \Delta_2 + \Delta_3 - d}{2}\right)$$



Pole at  $\Delta_3 = \Delta_1 + \Delta_2 + 2n$  for:

$n = 0 \longrightarrow$  **Extremal**

$n = 1, 2, \dots \longrightarrow$  **Super-extremal**

# How do we handle (super-)extremal couplings?

- 1998 physicist says: “Who cares!”
  - In all maximal SUSY setups, **all (super-)extremal bulk couplings vanish**
- **New puzzle:**  $\mathcal{N} = 4$  SYM has non-zero extremal OPE coefficients at weak coupling
  - **Resolution:** map between bulk fields and single-trace operators at weak coupling is subtle
  - **This talk:** always at strong coupling. No attempt to compare with weakly coupled gauge theory
- Maybe a healthy theory **cannot** have (super-)extremal bulk couplings?!

**Now wait 27 years...**

- **Nonsense!** We have half-maximal AdS/CFT pairs with these bulk couplings non-zero
  - So what do we do with them?!

# The point of this talk

1. Non-zero (super-)extremal couplings imply **non-trivial mixing** between single- and double-trace operators in the CFT
  - Use the **conformal block expansion** of 4-point functions to diagnose this, and unmix the CFT data in a generic, bottom-up scenario
2. **(Super-)extremal couplings appear** in a class of **4d  $\mathcal{N} = 2$  SCFTs**, dual to IIB SUGRA in  $\text{AdS}_5 \times S^5$  coupled to Yang-Mills on a  $\text{AdS}_5 \times S^3$  brane worldvolume
  - Compute the final piece of the **gluon 4-point function** up to order  $1/N^2$ , by summing towers of Witten diagrams with (super-)extremal couplings
  - (Super-)extremal couplings induces mixing; **we unmix the data**
  - Determine **all stringy corrections** at order  $1/N^2$  using SUSY localisation

# Part I: Unmixing Data in Bottom-Up Holography

# An expansion around generalised free fields

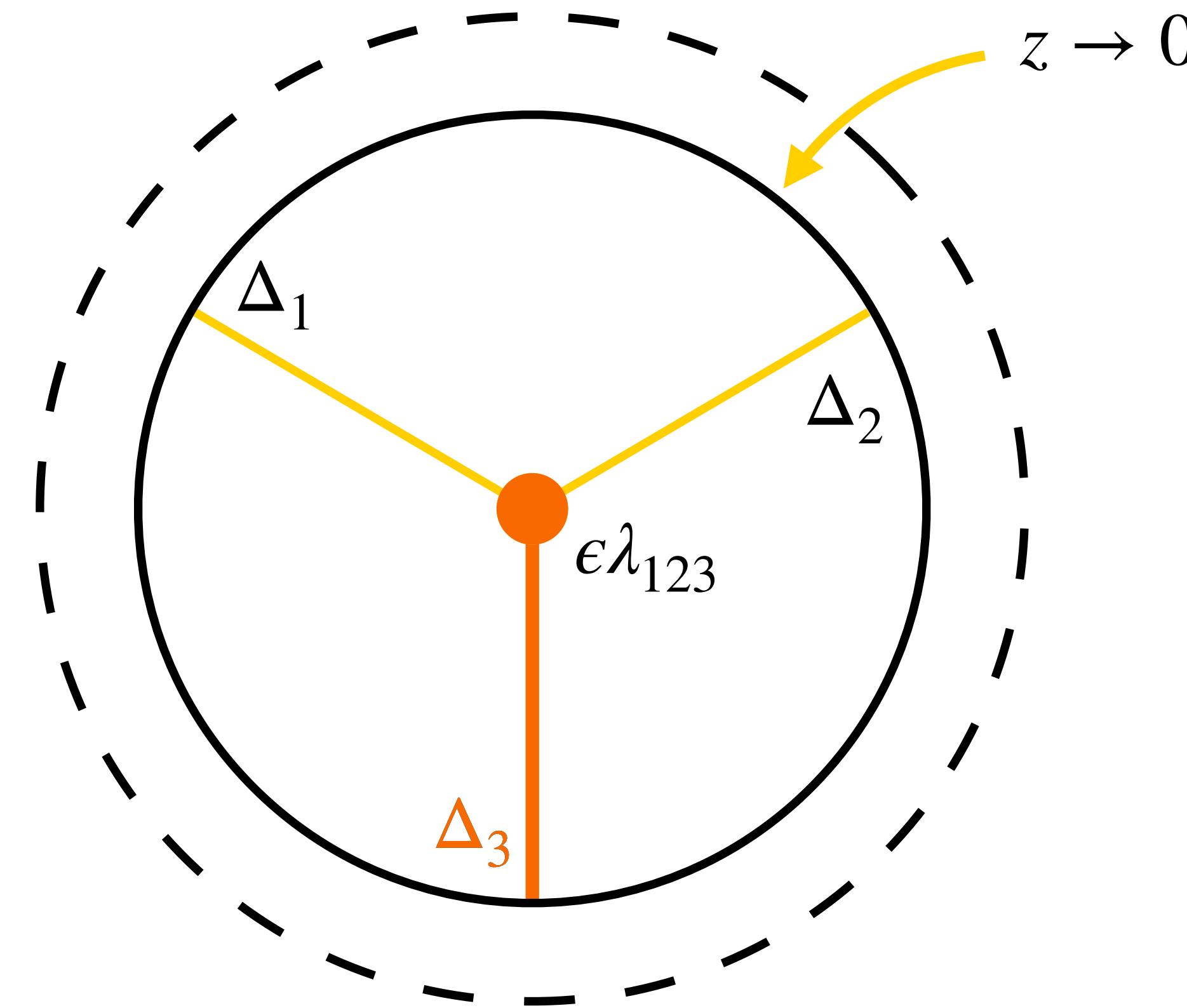
- Simple **bottom-up model**: a bunch of scalars  $\phi_i$  in  $\text{AdS}_{d+1}$ 
  - Masses  $m_i$ , cubic couplings  $\lambda_{ijk}$
  - Set  $\lambda_{ijk} \rightarrow 0$ 
    - Dual CFT is a **generalised free field theory**
    - All correlation functions determined by **Wick contractions**  $\widehat{\phi_i \phi_j} \propto \delta_{ij}$
  - Now turn on  $\lambda_{ijk} \sim \epsilon$  with  $\epsilon$  small
    - Dual CFT is now a **perturbation of GFFT**

Use same notation for  
dual CFT operators

# The source of the issue

## Diverging Witten diagrams

- OPE coefficients  $C_{ijk} \sim \epsilon$  encoded in 3-point Witten diagrams



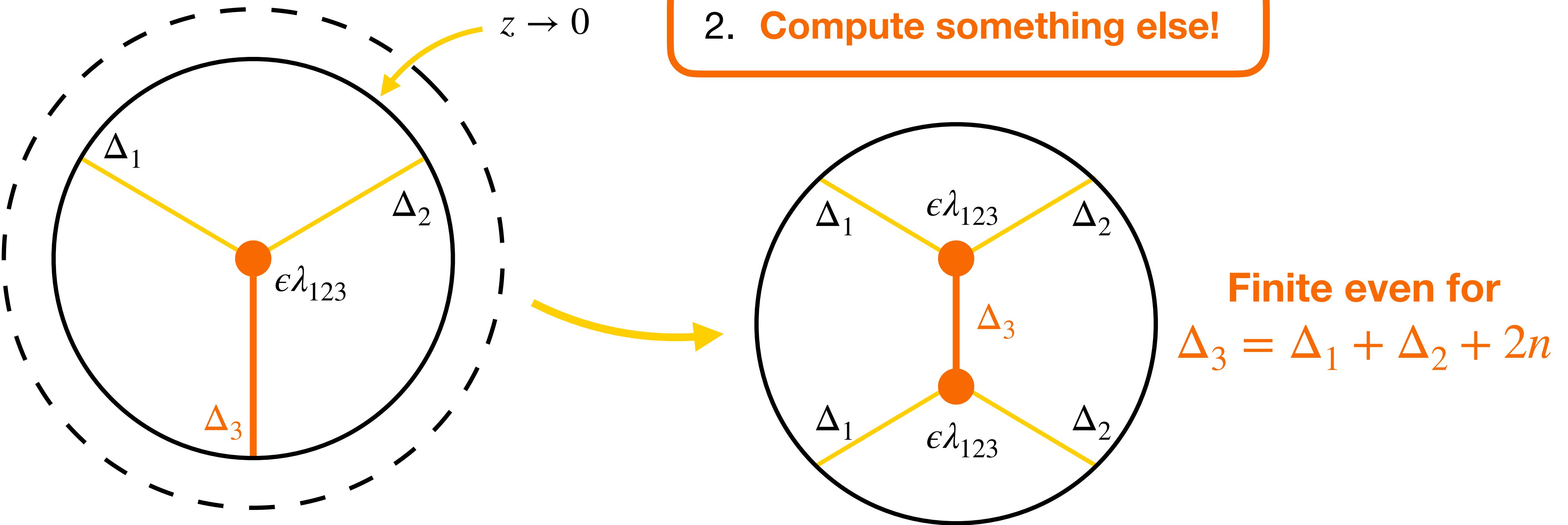
- Only converges as  $z \rightarrow 0$  if  $\Delta_3 < \Delta_1 + \Delta_2$  (and perms)
- $\Gamma$ -functions give analytic continuation to generic  $\Delta_3 > \Delta_1 + \Delta_2$  (and perms)
- But even this expression **diverges** when  $\Delta_3 = \Delta_1 + \Delta_2 + 2n$

# The source of the issue

## Ways to proceed

1. Use **holographic renormalisation** to regularise and get something sensible

2. **Compute something else!**

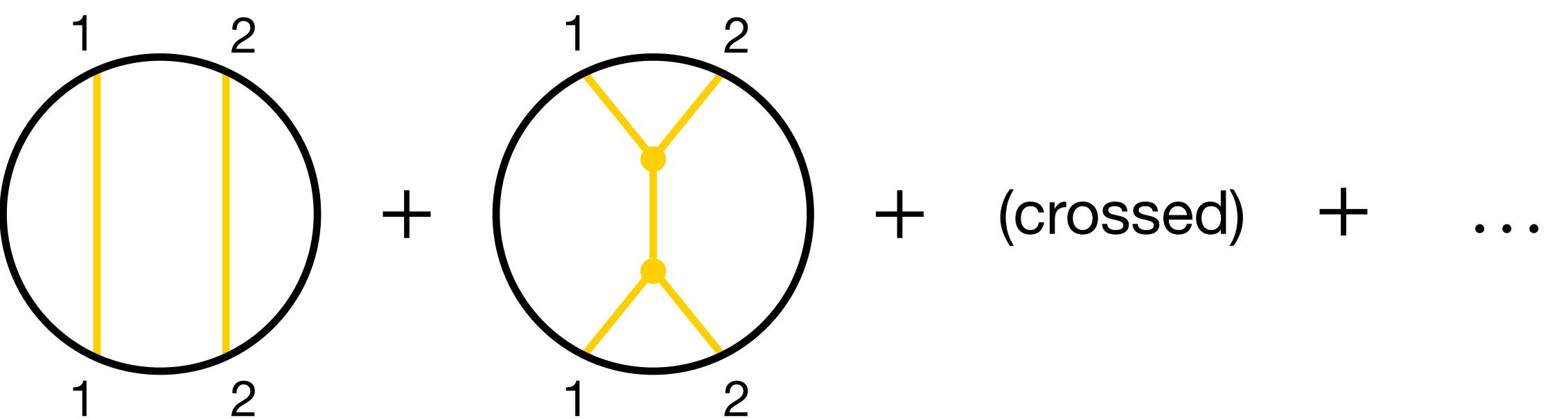


**Finite even for**  
 $\Delta_3 = \Delta_1 + \Delta_2 + 2n$

# CFT data from 4-point functions

## Conformal block expansion

- Suppose we've computed  $\langle \phi_1 \phi_2 \phi_1 \phi_2 \rangle =$



- OPE data  $\phi_1 \phi_2 \sim \sum_{\Delta} C_{\Delta} \mathcal{O}_{\Delta}$  encoded in **conformal block expansion**

$$\langle \phi_1 \phi_2 \phi_1 \phi_2 \rangle = f(x) \sum_{\Delta} C_{\Delta}^2 g_{\Delta}(u, v)$$

# CFT data from 4-point functions

## Specialising to dominant operators

- We call an operator “**dominant**” (with respect to  $\phi_1, \phi_2$ ) if

$$\lim_{\epsilon \rightarrow 0} C_\Delta \neq 0$$

- GFFT at  $\epsilon \rightarrow 0$  means these are precisely the double traces

|                                |                                    |                                    |     |
|--------------------------------|------------------------------------|------------------------------------|-----|
| $:\phi_1\phi_2:$               | $:\phi_1 \square \phi_2:$          | $:\phi_1 \square^2 \phi_2:$        | ... |
| $\Delta = \Delta_1 + \Delta_2$ | $\Delta = \Delta_1 + \Delta_2 + 2$ | $\Delta = \Delta_1 + \Delta_2 + 4$ |     |

- How does the conformal block expansion encode their **leading anomalous dimensions?**

# CFT data from 4-point functions

## Anomalous dimensions of dominant operators

- Let's **expand**  $(C_\Delta)^2 = a^{(0)} + \mathcal{O}(\epsilon)$ ,  $\Delta = \Delta^{(0)} + \epsilon\Delta^{(1)} + \mathcal{O}(\epsilon^2)$
- Fact: As  $u \rightarrow 0$  we have  $g_\Delta(u, v) \sim u^{\Delta^{(0)}} h_\Delta(v)$
- Expand  $\langle \phi_1 \phi_2 \phi_1 \phi_2 \rangle$  in small  $u$  and small  $\epsilon$ . For each **dominant operator**, must find terms

$$(C_\Delta)^2 g_\Delta(u, v) \sim u^{\Delta^{(0)}/2} \left[ \left( a^{(0)} + \dots \right) + \epsilon \left( \frac{1}{2} a^{(0)} \Delta^{(1)} \log u + \dots \right) + \epsilon^2 \left( \frac{1}{8} a^{(0)} (\Delta^{(1)})^2 \log^2 u + \dots \right) + \dots \right] h_{\Delta_0}(v)$$

- Assume no (super-)extremal couplings** and compute Witten diagrams, then expand. For each dominant double trace  $\Delta^{(0)} = \Delta_1 + \Delta_2 + 2n$ , we indeed find terms

$$u^{\Delta^{(0)}/2} \left[ \left( \# + \dots \right) + \epsilon \left( \begin{array}{c} 0 \\ 0 \end{array} \right) + \epsilon^2 \left( \begin{array}{c} 0 \\ \log^2 u + \dots \end{array} \right) + \dots \right] h_{\Delta_0}(v)$$

$$\longrightarrow \Delta^{(1)} = 0$$

# The problem with (super-)extremal couplings

$$(C_\Delta)^2 g_\Delta(u, v) \sim u^{\Delta^{(0)}/2} \left[ \left( a^{(0)} + \dots \right) + \epsilon \left( \frac{1}{2} a^{(0)} \Delta^{(1)} \log u + \dots \right) + \epsilon^2 \left( \frac{1}{8} a^{(0)} (\Delta^{(1)})^2 \log^2 u + \dots \right) + \dots \right] h_{\Delta_0}(v)$$

- Now suppose  $\Delta_3 = \Delta_1 + \Delta_2 + 2n$ , and look at  $u^{\Delta^{(0)}/2}$  terms with  $\Delta^{(0)} = \Delta_1 + \Delta_2 + 2n$ . We find

$$u^{\Delta^{(0)}/2} \left[ \left( \# + \dots \right) + \epsilon \left( \quad 0 \quad \right) + \epsilon^2 \left( \quad \# \quad \log^2 u + \dots \right) + \dots \right] h_{\Delta_0}(v)$$


**Non-zero!**

## The assumption that fails:

The only dominant operators are the double traces  $:\phi_1 \square^n \phi_2:$ ,  $n = 0, 1, \dots$

- Resolution:** mixing between  $\phi_3$  and  $:\phi_1 \square^n \phi_2:$ , both of which have  $\Delta = \Delta_1 + \Delta_2 + 2n$

# Unmixing the spectrum

## Resolving the puzzle

- So now assume we have **two dominant operators**  $\mathcal{O}, \tilde{\mathcal{O}}$  with  $\Delta^{(0)} = \Delta_1 + \Delta_2 + 2n$ , which are linear combinations of  $\phi_3$  and  $:\phi_1 \square^n \phi_2:$
- The relevant terms in the conformal block expansion are now

$$(C_\Delta)^2 g_\Delta(u, v) + (\tilde{C}_{\tilde{\Delta}})^2 g_{\tilde{\Delta}}(u, v) \sim u^{\Delta^{(0)}/2} \left[ \underbrace{\left( a^{(0)} + \tilde{a}^{(0)} \right) + \dots}_{\neq 0} + \underbrace{\epsilon \left( \frac{1}{2} \left( a^{(0)} \Delta^{(1)} + \tilde{a}^{(0)} \tilde{\Delta}^{(1)} \right) \log u + \dots \right)}_{= 0} + \underbrace{\epsilon^2 \left( \frac{1}{8} \left( a^{(0)} (\Delta^{(1)})^2 + \tilde{a}^{(0)} (\tilde{\Delta}^{(1)})^2 \right) \log^2 u + \dots \right)}_{\neq 0} + \dots \right] h_{\Delta_0}(v)$$

- Now it's fine! But **only 3 constraints for 4 pieces of data**

# Unmixing the spectrum

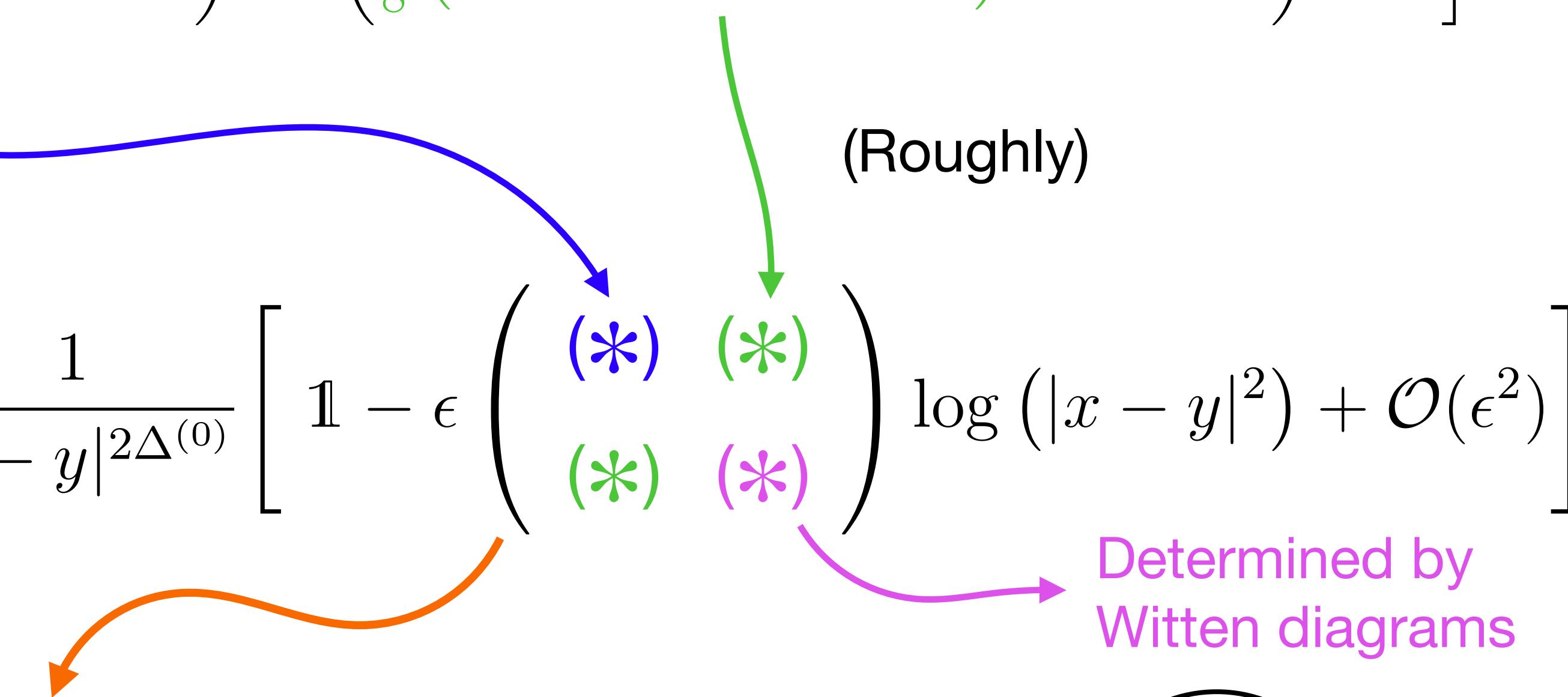
## Determining the mixing matrix

$$(C_\Delta)^2 g_\Delta(u, v) + (\tilde{C}_{\tilde{\Delta}})^2 g_{\tilde{\Delta}}(u, v)$$

$$\sim u^{\Delta^{(0)}/2} \left[ \left( (a^{(0)} + \tilde{a}^{(0)}) + \dots \right) + \epsilon \left( \frac{1}{2} \left( a^{(0)} \Delta^{(1)} + \tilde{a}^{(0)} \tilde{\Delta}^{(1)} \right) \log u + \dots \right) + \epsilon^2 \left( \frac{1}{8} \left( a^{(0)} (\Delta^{(1)})^2 + \tilde{a}^{(0)} (\tilde{\Delta}^{(1)})^2 \right) \log^2 u + \dots \right) + \dots \right] h_{\Delta_0}(v)$$

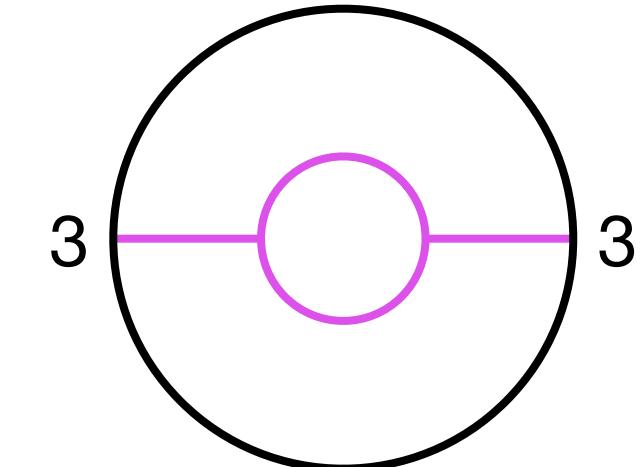
$$\begin{pmatrix} \langle (\phi_1 \square^n \phi_2) (\phi_1 \square^n \phi_2) \rangle & \langle (\phi_1 \square^n \phi_2) \phi_3 \rangle \\ \langle \phi_3 (\phi_1 \square^n \phi_2) \rangle & \langle \phi_3 \phi_3 \rangle \end{pmatrix} = \frac{1}{|x - y|^{2\Delta^{(0)}}} \left[ \mathbb{1} - \epsilon \begin{pmatrix} (*) & (*) \\ (*) & (*) \end{pmatrix} \right] \log (|x - y|^2) + \mathcal{O}(\epsilon^2)$$

- **Eigenvalues** give you **anomalous dimensions**  $\Delta_{(1)}, \tilde{\Delta}_{(1)}$
- **Eigenvectors** give you **OPE coefficients**  $a_{(0)}, \tilde{a}_{(0)}$



# Unmixed data for the bottom-up model

- 4-point function has no **contribution at order  $\epsilon$**
- **Leading correction to  $\langle \phi_3 \phi_3 \rangle$**  also comes at order  $\epsilon^2$  from



$$\xrightarrow{\quad} \text{Mixing matrix} \begin{pmatrix} 0 & (*) \\ (*) & 0 \end{pmatrix} \xrightarrow{\quad}$$

- **Key lesson:** The CFT primaries are a non-trivial mix of the generalised free field operators!

## Unmixed operators:

$$\frac{1}{\sqrt{2}} (:\phi_1 \square^n \phi_2: \pm \phi_3)$$

$$\Delta = \Delta_1 + \Delta_2 + 2n \pm \textcolor{brown}{a}\epsilon + \mathcal{O}(\epsilon^2)$$

$$C_\Delta = \frac{1}{\sqrt{2}} C_\Delta^{\text{GFFT}} + \mathcal{O}(\epsilon)$$

- Have also determined  $\textcolor{brown}{a}$  independently by **holographic renormalisation** of the 3-point Witten diagram (already done in [Castro, Martinez, '24] for the extremal ( $n = 0$ ) case)

# Part II: Application to a 4d $\mathcal{N} = 2$ Setup

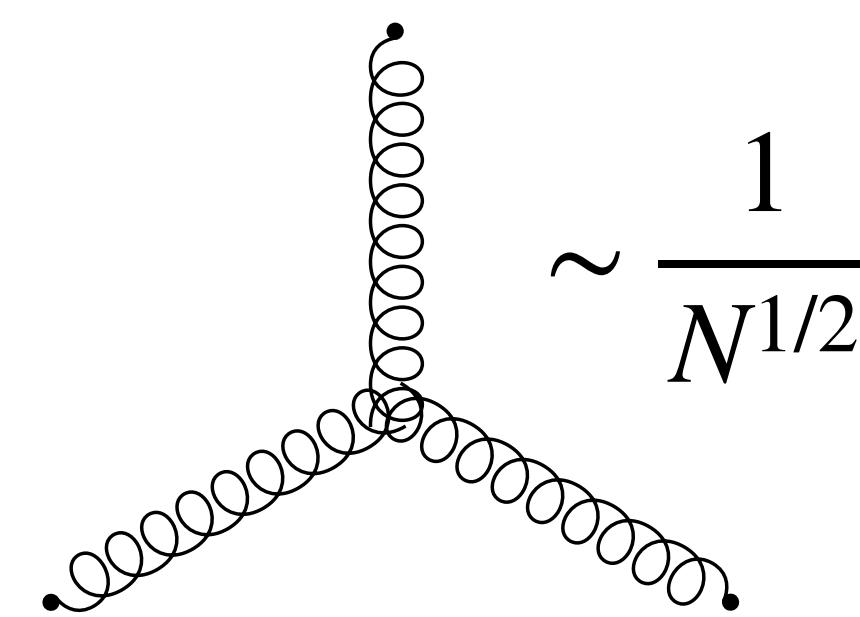
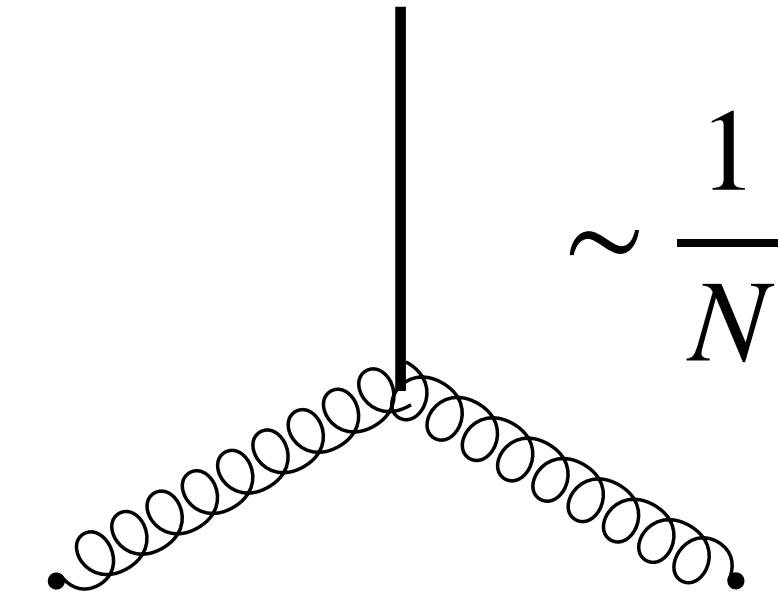
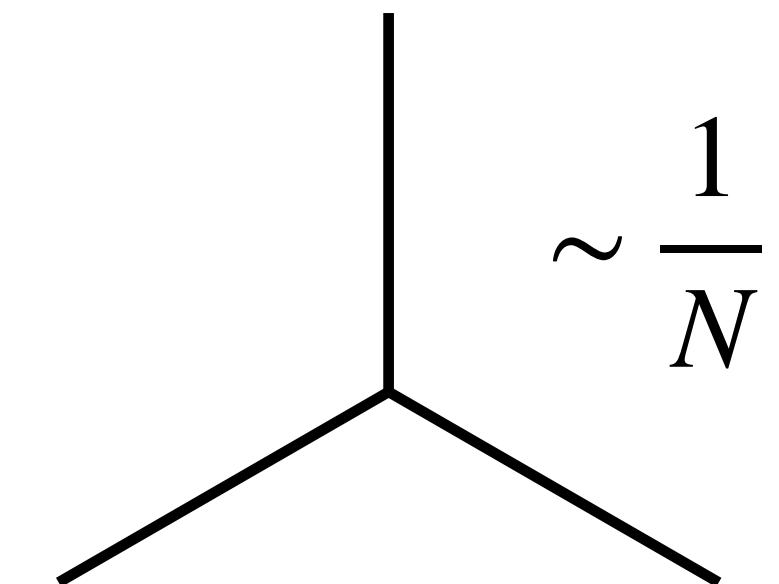
# The theories of interest

- **String theory:**  $N$  D3-branes probing F-theory singularities  $G_F = A_1, A_2, D_4, E_6, E_7, E_8$ 
  - All but  $D_4$  have **constant complexified string coupling**  $\tau$ . For  $D_4$ , we hold  $\tau$  fixed  $\tau \sim g_s^{-1} \sim N/\lambda$
- At large  $N$  have IIB SUGRA on  $\text{AdS}_5 \times (S^5/\Gamma)$
- **8d Yang-Mills with gauge group**  $G_F$  on fixed point locus  $\text{AdS}_5 \times S^3$
- $\mathcal{N} = 2$  SCFT has symmetries  $G_F \times SU(2)_L \times SU(2)_R \times U(1)_R$ 

|         |   |
|---------|---|
| Flavour | R |
|---------|---|
- **KK reduce to**  $\text{AdS}_5$  and look at scalar superprimaries:
  - 8d gauge field  $\rightarrow \phi_p$  in  $(\text{Adj}, \frac{p}{2}-1, \frac{p}{2})_0$  and  $\Delta = p$   $\longrightarrow$  **Short multiplets**
  - 10d graviton  $\rightarrow s_{k,r}$  in  $(1, \frac{r}{2}-1, \frac{r}{2}-1)_0$  and  $\Delta = k = r, r+2, \dots$   $\longrightarrow$  **Long multiplets**  
(except  $s_{2,2}$ )

# The correlator of interest

- Couplings:



$$\langle \phi_2 \phi_2 \phi_p \phi_p \rangle_{\text{conn}} = \frac{1}{N} \left[ \text{Diagram with two short multiplets} \right] + \frac{1}{N^2} \left[ \text{Diagram with one short multiplet and one long multiplet} \right]$$

Plus  $\tau$ -dependent contact terms

$$+ \left[ \text{Diagram with two long multiplets} \right]$$

Involve only short multiplets

Bootstrapable! [Alday, Behan, Bissi, Ferrero, Zhou]

Long multiplet exchanges  
unknown

# The bulk computation

- Fancy tricks (i.e. **bootstrapping using CFT consistency**) are not useful here
- Have to do things to “old” way: really just **compute the Witten diagrams!**
- Need **bulk cubic couplings**:

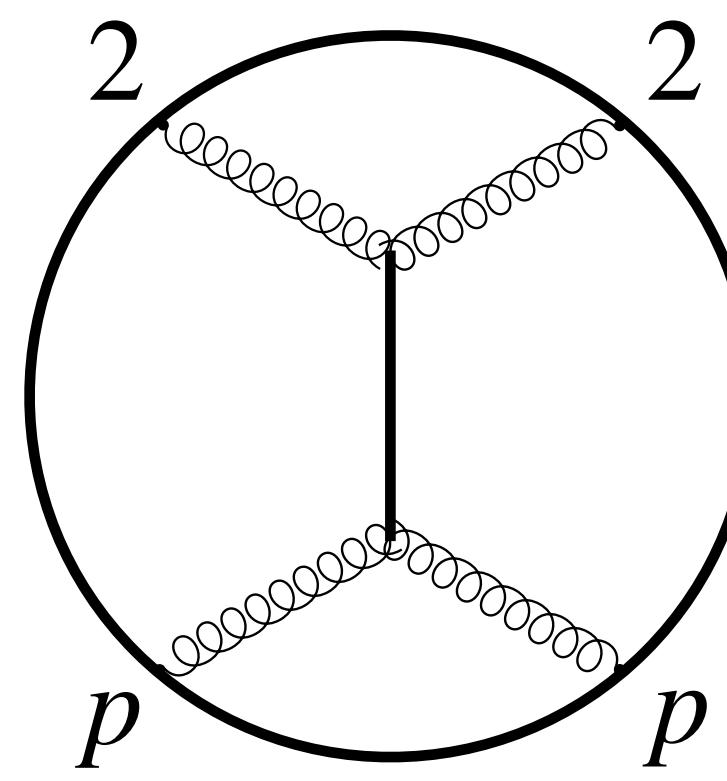
$$\lambda_{p,q,(k,r)} \phi_p \phi_q s_{k,r}, \quad \Delta_3 - \Delta_1 - \Delta_2 = k - p - q \quad \longrightarrow \quad \begin{aligned} & \text{(Super-)extremal for all} \\ & k = p + q, p + q + 2, \dots \end{aligned}$$

A certain amount of pain later...

$$\lambda_{p,q,(k,r)} = \frac{\pi}{2N} \sqrt{\frac{(r-1)(p-1)(q-1)}{2\Delta k_r (k_r - 1)(k_r + 1)}} \frac{\Gamma(p-1)\Gamma(q-1)\Gamma(r-1)}{\Gamma\left(\frac{p+q-r}{2}\right) \Gamma\left(\frac{r+p-q}{2}\right) \Gamma\left(\frac{r+q-p}{2}\right) \Gamma\left(\frac{p+q+r-2}{2}\right)} (k_r + p - q)(k_r + q - p)(k_r + p + q - 2)(k_r + p + q - 4)$$

# Final answer for graviton exchange

- Work in Mellin space. Basically Fourier space for cross ratios,  $(u, v) \rightarrow (s, t)$



$$\begin{aligned}
 + \text{(crossed)} = & -\frac{p}{(p-2)!\Delta} \left[ \left( (p+1)H_{1-\frac{s}{2}} + \frac{4}{s-2} \right) \delta^{AB} \delta^{CD} \right. \\
 & + \left( (p+1)H_{\frac{2+p-u}{2}} + \frac{2p}{u-p} \right) \delta^{AC} \delta^{BD} \\
 & \left. + \left( (p+1)H_{\frac{2+p-t}{2}} + \frac{2p}{t-p} \right) \delta^{AD} \delta^{BC} \right]
 \end{aligned}$$

Harmonic number  $H_n = \sum_k \frac{1}{n^k}$ 
G<sub>F</sub> adjoint index

# A more interesting mixing problem

## The effect of gluon exchange

- Have mixing, for instance, between

- Gluon double-trace :  $\phi_2\phi_2$  :
- Graviton single-trace  $s_{4,2}$

} Both flavour and R-symmetry  
singlets with  $\Delta = 4$

$$u^{\Delta^{(0)}/2} \left[ \left( (a^{(0)} + \tilde{a}^{(0)}) + \dots \right) + \frac{1}{N} \left( \frac{1}{2} \left( a^{(0)} \Delta^{(1)} + \tilde{a}^{(0)} \tilde{\Delta}^{(1)} \right) \log u + \dots \right) + \frac{1}{N^2} \left( \frac{1}{8} \left( a^{(0)} (\Delta^{(1)})^2 + \tilde{a}^{(0)} (\tilde{\Delta}^{(1)})^2 \right) \log^2 u + \dots \right) + \dots \right] h_{\Delta_0}(v)$$

Now non-zero due to gluon exchange at order  $1/N$

- Mixing matrix  $\begin{pmatrix} (*) & (*) \\ (*) & 0 \end{pmatrix} \xrightarrow{\text{e.g. } G_F = D_4}$

$$(C_\Delta)^2 = \frac{1}{3} \pm \sqrt{\frac{5}{381}} + \mathcal{O}\left(\frac{1}{N}\right)$$

$$\Delta = 4 - \frac{1}{N} \left( 3 \pm \sqrt{\frac{381}{5}} \right) + \mathcal{O}\left(\frac{1}{N^2}\right)$$

# A more interesting mixing problem

## Mixing amongst double traces

- Things yet more interesting at higher scaling dimension. For  $\Delta = 2n$  get mixing between

$$s_{2n,2} \quad : \phi_n \phi_n : \quad : \phi_{n-1} \square \phi_{n-1} : \quad \dots \quad \phi_2 \square^{n-2} \phi_2$$

- Gluon exchange  $\longrightarrow$  **Mixing amongst double traces**
- Super-extremal graviton exchange  $\longrightarrow$  **Mixing between single and double traces**

- We determine mixing matrix

$$\left( \begin{array}{cc} \text{DT} & \text{ST} \\ \left( \begin{array}{cc} * & \\ & * \end{array} \right) & \left( \begin{array}{c} * \\ 0 \end{array} \right) \end{array} \right) \longrightarrow \text{Unmixed CFT data}$$

# All stringy corrections at order $1/N^2$ for $G_F = D_4$

## The contact terms we want

$$\langle \phi_2 \phi_2 \phi_2 \phi_2 \rangle_{\text{conn}} = \dots + \frac{1}{N^2} \left[ \begin{array}{c} \text{Diagram 1: Two vertical lines with 4 external legs labeled 2, 2, 2, 2. The top line has a wavy string loop.} \\ + \\ \text{Diagram 2: Two vertical lines with 4 external legs labeled 2, 2, 2, 2. The top line has a wavy string loop.} \\ + \\ \text{Diagram 3: Two vertical lines with 4 external legs labeled 2, 2, 2, 2. The top line has a wavy string loop. The bottom line has a wavy string loop.} \end{array} \right]$$

• Depends on 3 functions:

$$c_i(\tau) = \tau \left( \underbrace{\# + \# \tau^{-1} + \# \tau^{-2} + \dots}_{\text{Genus expansion}} \right), \quad i = 1, 2, 3$$

Different flavour structures

• Infinite series of **stringy corrections!**

# All stringy corrections at order $1/N^2$ for $G_F = D_4$

## Fixing using SUSY localisation

- The  $G_F = D_4$  theory has a complex exactly marginal coupling  $\tau$   
 → **Weakly coupled regime** described by  $USp(2N)$  gauge theory
- Use **SUSY localisation** to compute  $\mathcal{F}(m_i)$ , mass-deformed free energy on  $S^4$ 
  - Matrix model, evaluated to at finite  $\tau$  and to all perturbative orders in  $1/N$
  - Get **integrated constraints** of the form

$$(\partial_{m_a})^4 \mathcal{F}(m_a) \sim \int ds dt \langle \phi_2 \phi_2 \phi_2 \phi_2 \rangle$$

- Enough to **completely fix the  $c_i(\tau)$ !** For example,

$$c_1(\tau) = 6(\gamma - \log(4\pi)) - 3 \log \left[ \tau_2 |\theta_3(\tau) \theta_4(\tau)|^2 \right]$$

# Some final words

# Some other stuff we did

- We also compute the **flat space limit** of our graviton exchange contribution, and found an **exact match with the known result**
- **Hot off the press:** We have computed these graviton exchanges for some **other half-maximal setups:**
  - 3d  $\mathcal{N} = 4$  theories dual to  $\text{AdS}_4 \times (S^7/\mathbb{Z}_k)$
  - 6d  $\mathcal{N} = (1,0)$  theories dual to  $\text{AdS}_7 \times (S^4/\mathbb{Z}_2)$
  - Interplay between gluon and graviton exchanges **qualitatively different** due to different scalings with  $N$  (in some sense, 4d is the most interesting)

Thanks!