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Introduction: KLT Double Copy
Kawai-Lewellen-Tay (1986): closed string = (open string)?
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Introduction: Bi-adjoint ¢°

Taking o/ — 0: GR = (Yang-Mills)?

ZAYM S(B)A™(B)

What is the kernel S(«|3)? Does it have a physical interpretation?
Answer:

S(alB)™! = ma(alB)

Scattering amplitudes in bi-adjoint ¢>
Diagonal elements: m,, = my,(aja) are Tr(¢3) amplitudes



Introduction: Bi-adjoint ¢°

Bi-adjoint ¢3: A theory with many facets
Surfaceology 9-Shift to NLSM and YM

CHY Hidden Zeroes

Double Copy Positive Geometry
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What about the inverse string theory KLT kernel?
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Introduction: Inverse KLT Kernel

What about the inverse string theory KLT kernel?

Sar(alB) ™t =mS (o] B)

A lot less is known, studied by Mizera (2017)
Some ‘stringy’ version of bi-adjoint ¢>

lim mi¥ (a]8) = ma(al9)

Looks like a string amplitude, but is much simpler



Outline

o+ Review: Tr(¢3) Amplitudes

e Review: The ABHY Associahedron
o Geometry of Stringy Tr(¢?)

e Pions and Mixed Amplitudes

o Off-Diagonal Amplitudes



Tr (¢%) Amplitudes

Cubic scalar theory, only planar Feynman diagrams
Propagators in tree-level Tr (¢3) <— Planar Mandelstam variables

Xij = (pi+piv1+ - +pj)°
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Tr (¢%) Amplitudes

Cubic scalar theory, only planar Feynman diagrams
Propagators in tree-level Tr (¢3) <— Planar Mandelstam variables

Xij = (pi +pip1 + ... +pj_1)’
Masslessness: X411 = X1, =0
Momentum conservation: X;; = Xj;
At a pole X;; = 0 the amplitude factorizes: Locality & Unitarity
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Tr (¢%) Amplitudes: ms Singularities




Tr (¢%) Amplitudes: Examples

1 n 1
X13 Xoy

4 4 4 4 4
A =S =)
1 2 1 2 1 2 1 2 1 2
1 1 1 1 1

= + + + +
X13 X4 XXy XogXos  XosX35  X35X13




The ABHY Associahedron

Positive Geometry:
e Geometry A with boundaries «— poles of amplitude
o With a unique canonical form Q(A) (“=" scattering amplitude)

o Q(A) has log singularities at and only at boundaries of A



The ABHY Associahedron

Positive Geometry:
e Geometry A with boundaries «— poles of amplitude
o With a unique canonical form Q(A) (“=" scattering amplitude)
o Q(A) has log singularities at and only at boundaries of A
For Tr (¢3):
¢ Boundary structure: triangulations of an n-gon = Associahedron
o Boundaries at X;; =0

e Canonical form = m,,



The ABHY Associahedron

ABHY Associahedron A,, [Arkani-Hamed, Bai, He, Yuan]:
o All X;; >0 = correct facets
« Not full X;; space: keep (n —3) X’s and (n — 2)(n — 3)/2 constraints

cij = Xij + Xiv1je1 — Xijr1 — Xiv1j = —(pi +p;)* = positive const.
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The ABHY Associahedron
ABHY Associahedron A,, [Arkani-Hamed, Bai, He, Yuan]:
o All X;; >0 = correct facets
« Not full X;; space: keep (n —3) X’s and (n — 2)(n — 3)/2 constraints
Cij = Xij + Xi+1j+1 — Xij+1 — Xi+1j = *(pi +pj)2 = positive const.
For n = 4: X13, X24 = C13 — X13
X

(I) (/:13 X13

Ay



The ABHY Associahedron: Canonical Form

Canonical form:

A dXx dXx 1 1
Q0 e S I SE 13 ( L
0 as  Xig X1z c3—Xi3 X1z Xo




The ABHY Associahedron: Canonical Form

Canonical form:

A, dXx dXx 1 1
of——2iy ) _dXs 13 _ ( n )Xmg
0 s X X1z c3—Xi3 X1z Xo

For n > 5, we can use chambers and fibers

X 14
Co .
Project b {| Fibrate
¢
X3

As =1 X frUca X fo




The ABHY Associahedron: Canonical Form

In general:
e Chambers = product of lower-point associahedra
o Fibers = line-segment (= Ay)

Geometric Recursion

n

my = m(1,2,3,0)m(2,3,.. ., im(i,i + 1,0, 1,2) 5, Lx, x,
=4



The ABHY Associahedron: Canonical Form

In general:
e Chambers = product of lower-point associahedra

o Fibers = line-segment (= Ay)

Geometric Recursion

n
mn:Zm(1,2,3,7;)m(2,3,...,i)m(i,H1,...7n,1,2)yX2ﬁX2j7X2i
i=4
Example:
< 1 n 1 >< 1 n 1 >
mes =
’ X1z Xoa/ \ Xy Xos — Xy
1

1 1 1
ot ) (it )
X1z Xos/) \ X35  Xog— Xos



Summary

o Tr(¢3) Amplitudes m,

— Diagonal elements of S(a|B8)~! = m(a|B)
— Poles as X;; =0
— Factorizes on poles

e The ABHY Associahedron A,

— Polytope in kinematic space

— Boundaries at X;; =0

— Q(A,) = my,

— Once we know Q(A4), we can find m,, through geometric recursion



Stringy Tr(¢?)
Recall:

“Stringy” Tr(¢%): m2 = m& (ala)

my =1
o Lo,
Y7 tan(ra/X13) | tan(ma/Xoy)
/ 1 1
(0% — 1
s + tan(ma/ X13) tan(ma/ X14) i tan(ma/ X14) tan(ma/ Xoyg)
1 1 1

i tan(ma/ Xo4) tan(ma/ Xos) i tan(ma/ Xo5) tan(ma/ X35) * tan(ma/ X35) tan(ma/ X13)



Geometry of Stringy Tr (¢?)

a/
n

o Infinite resonance structure: Poles at X;; = k/o/, k € Z

mS is ‘stringy’:
o Factorizes on the poles
e Satisfies monodromy relations

e Reduces to my, as o/ =0
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a/
n
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o Infinite resonance structure: Poles at X;; = k/o/, k € Z
e Factorizes on the poles
e Satisfies monodromy relations
e Reduces to my, as o/ =0
For stringy Tr (¢3) amplitudes the geometric recursion still holds:
n
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Geometry of Stringy Tr (¢?)

a/
n

o Infinite resonance structure: Poles at X;; = k/o/, k € Z

mS is ‘stringy’:
e Factorizes on the poles
e Satisfies monodromy relations
e Reduces to my, as o/ =0
For stringy Tr (¢3) amplitudes the geometric recursion still holds:
n

=3 m(1,2,3,0)m® (2, 3,...,i)ma/(i,i+1,...,n,1,2)‘

i ng%ng*Xgi

We can recurse down to products of 4-point mi‘/
Thus: A geometry for mi‘l —> a geometry for m%,!



Geometry of Stringy Tr (¢?)

Want: a one-dimensional geometry with canonical form

sin(ra’ X13) B ( 1 N 1
sin(ma’(c13 — X13))  \tan(ma/X13)  tan(ra/Xay4)

wg = dlog ) dXi3



Geometry of Stringy Tr (¢?)

Want: a one-dimensional geometry with canonical form

/ sin(ra’ X13) ( 1 1 )
w4 ©8 sin(ma/(c13 — X13)) tan(ma/ X13) + tan(ma/ Xoy4) 19

Using Euler’s infinite product formula for sin(7x):

Xis+k/o/
X3 —cz+k/o

wg = Z dlog
kEZ

Which is the canonical form of an infinite sum of line segments!



Geometry of Stringy Tr (¢?)

Want: a one-dimensional geometry with canonical form

/ sin(ra’ X13) ( 1 1 )
w4 ©8 sin(ma/(c13 — X13)) tan(ma/ X13) + tan(ma/ Xoy4) 19

Using Euler’s infinite product formula for sin(7x):

X3+ k/Oé/

o — N d1
B l% o8 X3 — a3+ k/o

Which is the canonical form of an infinite sum of line segments!

—t —t . —t -
“w  Tw tos “w Twtos 0 €13 v wtes AL ¢



Geometry of Stringy Tr (¢?)
For higher n: Infinite grid of ABHY associahedral

 Correct poles as X;; = k/a/
o Factorises on poles

o QAY) =m

n
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Pions and Mixed Amplitudes

m¢ contains Tr (¢%) as o/ — 0
Surprisingly, it also contains pions in the NLSM! [Bartsch, Kampf, Novotny, Trnka]
o Rescale o/ — o//2
o Shift certain X;; — X;; £1/¢/

o NLSM amplitudes as o/ — 0

1 1
%
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Pions and Mixed Amplitudes

m¢ contains Tr (¢%) as o/ — 0
Surprisingly, it also contains pions in the NLSM! [Bartsch, Kampf, Novotny, Trnka]
o Rescale o/ — o//2
o Shift certain X;; — X;; £1/¢/

o NLSM amplitudes as o/ — 0

1 1
%
tan(ma/X;;)  tan(ma/ X /2 4+ 7/2)

= — tan(ﬂa'Xij/2)

Example:

/ 1 1
o
M= tan(ma/ X13) i tan(ma/ Xoq)

— —tan(ra’ X13/2) — tan(ra’ X24/2)

As o — 0 we recover AYSM = X3 — X,



Pions and Mixed Amplitudes

Geometrically: this isolates an infinite subgrid of associahedra

P
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Pions and Mixed Amplitudes

Field theory amplitude in o/ — 0:

v

N "
* + >+
1 1 2 =+ 11
o’ a’ 13 o’ ar T3



Pions and Mixed Amplitudes

Field theory amplitude in o/ — 0:
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Pions and Mixed Amplitudes

Field theory amplitude in o/ — 0:

. : N ‘ >
hm B 2 1 1 ) 1 1 > 2 '
W0 o ot - —ar tas 0 c13 7 + teas Z o tos
— lim - . >
! 1 1
a’'—0 L Lo

: 1 1
— lim = X2 — X
v <X13 EYAY + X — 1/0/) 13 24



Pions and Mixed Amplitudes

Field theory amplitude in o/ — 0:

v

i}glo -2 —Z ey -4 Lt 0 c13 L Lt Z Z + o
— lim NI >
=0 = T+
— lim 1 + 1 = —X.— X
- — T A13 T A24
=0 X13+1/O/ X24—1/O/

This is the same as the J-shift if we equate 6 = 1/a/!



Pions and Mixed Amplitudes

Field theory amplitude in o/ — 0:

v

i}glo 7% 7%4»613 75 7§+613 0 C13 % §+613 ﬁ %Jrclii
— lim — 1 >
=0 = T+
— lim 1 + 1 = —X.— X
— — T A3 T A2
=0 X13+1/O[/ X24—1/O/

This is the same as the J-shift if we equate 6 = 1/a/!
Other subgrids give amplitudes inaccessible by d-shift



Off-Diagonal Amplitudes

So far: stringy Tr (¢3)+ Diagonal my, (I|I)
How about stringy m/(«|5)?
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So far: stringy Tr (¢3)+ Diagonal my, (I|I)
How about stringy m/(«|5)?
They can be written as some m&’s times products of 1/ sin(ra’X;;). Example:
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So far: stringy Tr (¢3)+ Diagonal my, (I|I)
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Off-Diagonal Amplitudes

So far: stringy Tr (¢3)+ Diagonal my, (I|I)
How about stringy m/(«|5)?
They can be written as some m&’s times products of 1/ sin(ra’X;;). Example:

1 1 1
/(I|13245) =
ma (Il ) sin(ma’ X13) (tan(ﬂa’XM) v tan(ﬂa’X35))

Geometry for 1/sin(ra/X;;) = Geometry for all off-diagonal amplitudes
Canonical form:
dX;

dlog tan(ma’Xii /2) = r 0% S
ij



Off-Diagonal Amplitudes
Playing the same game as before: we again find infinitely many line segments!
” * Xi3

0

1
o’
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Off-Diagonal Amplitudes

Playing the same game as before: we again find infinitely many line segments!

_2 —_
o’

1 2
o 0 o o X13

For m,(1]13245):

Treated on the same footing as stringy Tr (¢3)



Summary

o “Stringy bi-adjoint ¢* amplitudes” m® (af3)
— Central in KLT double copy
— Natural stringification of the well-studied Tr(¢3)

o Geometric description in terms of the Associahedral grid
o Geometry contains all NLSM and mixed 7/¢ amplitudes

o Positive geometry containing stringy features, beyond rational functions

>
s >
-2 _2 -1 _1 2 1 1 2 o T

o o tas o o tas 0 €13 e o tas o o 13X 13



QLA

Thank you for listening!



Bonus Slides

N 1 1 1 1
Mo = (tan(ﬂa’Xlg) + tan(ﬂo/XM)) (tan(ﬂa’XM) o tan(ma/ (Xo5 — X24)))

1 1 1 1
+
+ (tan(ﬂa’Xlg) + tan(wa’ng))) (tan(wa’ng,) tan(ma/ (Xog — X25)))



Bonus Slides

The ’spurious boundaries’ give all the correct contact terms:

1 1+ tan(ma/ X,) tan(mo/ Xp)
tan(ra/ (X, — X)) tan(ra/X,) — tan(ma’/Xp)

Which leads to the correct
e’ — 11 1 . 1
b tan(ma/ X13) tan(mra/ X14)  tan(ma’/ Xq4) tan(mra/ Xoyg)
1 1 1

v tan(ma/ Xo4) tan(ma/ Xos) " tan(ma/ Xo5) tan(ma/ X35) + tan(ma/ X13) tan(ma/ X35)



