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Introduction: KLT Double Copy
Kawai-Lewellen-Tay (1986): closed string = (open string)2

Aclosed =
∑
α,β

Aopen(α) Sα′(α|β)︸ ︷︷ ︸
KLT Kernel

Aopen(β)
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Introduction: Bi-adjoint ϕ3

Taking α′ → 0: GR = (Yang-Mills)2

AGR =
∑
α,β

AYM(α)S(α|β)AYM(β)

What is the kernel S(α|β)? Does it have a physical interpretation?
Answer:

S(α|β)−1 = mn(α|β)

Scattering amplitudes in bi-adjoint ϕ3

Diagonal elements: mn ≡ mn(α|α) are Tr
(
ϕ3) amplitudes
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Introduction: Bi-adjoint ϕ3

Bi-adjoint ϕ3: A theory with many facets

Bi-adjoint 

Double Copy

CHY

Surfaceology

Positive Geometry

Hidden Zeroes

-Shift to NLSM and YM



Introduction: Inverse KLT Kernel

What about the inverse string theory KLT kernel?

Sα′(α|β)−1 = mα′
n (α|β)

A lot less is known, studied by Mizera (2017)
Some ‘stringy’ version of bi-adjoint ϕ3

lim
α′→0

mα′
n (α|β) = mn(α|β)

Looks like a string amplitude, but is much simpler
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Outline

• Review: Tr
(
ϕ3) Amplitudes

• Review: The ABHY Associahedron
• Geometry of Stringy Tr(ϕ3)
• Pions and Mixed Amplitudes
• Off-Diagonal Amplitudes



Tr (ϕ3) Amplitudes
Cubic scalar theory, only planar Feynman diagrams
Propagators in tree-level Tr

(
ϕ3) ←→ Planar Mandelstam variables

Xij := (pi + pi+1 + . . . + pj−1)2

Masslessness: Xii+1 = X1n = 0
Momentum conservation: Xij = Xji

At a pole Xij = 0 the amplitude factorizes: Locality & Unitarity

Res
Xij=0

=
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Tr (ϕ3) Amplitudes: m5 Singularities
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Tr (ϕ3) Amplitudes: Examples

m3 = 1

m4 = +

= 1
X13

+ 1
X24

m5 = + + + +

= 1
X13X14

+ 1
X14X24

+ 1
X24X25

+ 1
X25X35

+ 1
X35X13



The ABHY Associahedron

Positive Geometry:
• Geometry A with boundaries ←→ poles of amplitude
• With a unique canonical form Ω(A) (“=” scattering amplitude)
• Ω(A) has log singularities at and only at boundaries of A

For Tr
(
ϕ3):

• Boundary structure: triangulations of an n-gon =⇒ Associahedron
• Boundaries at Xij = 0
• Canonical form = mn
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The ABHY Associahedron
ABHY Associahedron An [Arkani-Hamed, Bai, He, Yuan]:

• All Xij ≥ 0 =⇒ correct facets
• Not full Xij space: keep (n− 3) X’s and (n− 2)(n− 3)/2 constraints

cij = Xij + Xi+1j+1 −Xij+1 −Xi+1j = −(pi + pj)2 = positive const.

For n = 4: X13, X24 = c13 −X13
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The ABHY Associahedron: Canonical Form
Canonical form:

Ω
( )

= dX13
X13

+ dX13
c13 −X13

=
( 1

X13
+ 1

X24

)
dX13

For n ≥ 5, we can use chambers and fibers

Project Fibrate

A5 = c1 × f1 ∪ c2 × f2
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The ABHY Associahedron: Canonical Form
In general:

• Chambers = product of lower-point associahedra
• Fibers = line-segment (= A4)

Geometric Recursion

mn =
n∑

i=4
m(1, 2, 3, i)m(2, 3, . . . , i)m(i, i + 1, . . . , n, 1, 2)|X2j→X2j−X2i

Example:

m5 =
( 1

X13
+ 1

X24

)( 1
X14

+ 1
X25 −X24

)
+
( 1

X13
+ 1

X25

)( 1
X35

+ 1
X24 −X25

)
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Summary

• Tr
(
ϕ3) Amplitudes mn

— Diagonal elements of S(α|β)−1 = m(α|β)
— Poles as Xij = 0
— Factorizes on poles

• The ABHY Associahedron An

— Polytope in kinematic space
— Boundaries at Xij = 0
— Ω(An) = mn

— Once we know Ω(A4), we can find mn through geometric recursion



Stringy Tr(ϕ3)
Recall:

S−1
α′ = mα′

n (α|β)

“Stringy” Tr
(
ϕ3): mα′

n ≡ mα′
n (α|α)

mα′
3 = 1

mα′
4 = 1

tan(πα′X13) + 1
tan(πα′X24)

mα′
5 = 1 + 1

tan(πα′X13) tan(πα′X14) + 1
tan(πα′X14) tan(πα′X24)

+ 1
tan(πα′X24) tan(πα′X25) + 1

tan(πα′X25) tan(πα′X35) + 1
tan(πα′X35) tan(πα′X13)



Geometry of Stringy Tr (ϕ3)
mα′

n is ‘stringy’:
• Infinite resonance structure: Poles at Xij = k/α′, k ∈ Z
• Factorizes on the poles
• Satisfies monodromy relations
• Reduces to mn as α′ → 0

For stringy Tr
(
ϕ3) amplitudes the geometric recursion still holds:

mα′
n =

n∑
i=4

mα′(1, 2, 3, i)mα′(2, 3, . . . , i)mα′(i, i + 1, . . . , n, 1, 2)
∣∣∣
X2j→X2j−X2i

We can recurse down to products of 4-point mα′
4

Thus: A geometry for mα′
4 =⇒ a geometry for mα′

n !
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Geometry of Stringy Tr (ϕ3)

Want: a one-dimensional geometry with canonical form

ωα′
4 = d log sin(πα′X13)

sin(πα′(c13 −X13)) =
( 1

tan(πα′X13) + 1
tan(πα′X24)

)
dX13

Using Euler’s infinite product formula for sin(πx):

ωα′
4 =

∑
k∈Z

d log X13 + k/α′

X13 − c13 + k/α′

Which is the canonical form of an infinite sum of line segments!



Geometry of Stringy Tr (ϕ3)

Want: a one-dimensional geometry with canonical form

ωα′
4 = d log sin(πα′X13)

sin(πα′(c13 −X13)) =
( 1

tan(πα′X13) + 1
tan(πα′X24)

)
dX13

Using Euler’s infinite product formula for sin(πx):

ωα′
4 =

∑
k∈Z

d log X13 + k/α′

X13 − c13 + k/α′

Which is the canonical form of an infinite sum of line segments!



Geometry of Stringy Tr (ϕ3)

Want: a one-dimensional geometry with canonical form

ωα′
4 = d log sin(πα′X13)

sin(πα′(c13 −X13)) =
( 1

tan(πα′X13) + 1
tan(πα′X24)

)
dX13

Using Euler’s infinite product formula for sin(πx):

ωα′
4 =

∑
k∈Z

d log X13 + k/α′

X13 − c13 + k/α′

Which is the canonical form of an infinite sum of line segments!



Geometry of Stringy Tr (ϕ3)
For higher n: Infinite grid of ABHY associahedra!

• Correct poles as Xij = k/α′

• Factorises on poles
• Ω(Aα′

n ) = mα′
n



Pions and Mixed Amplitudes
mα′

n contains Tr
(
ϕ3) as α′ → 0

Surprisingly, it also contains pions in the NLSM! [Bartsch, Kampf, Novotný, Trnka]

• Rescale α′ → α′/2
• Shift certain Xij → Xij ± 1/α′

• NLSM amplitudes as α′ → 0

1
tan(πα′Xij) →

1
tan(πα′Xij/2 + π/2) = − tan

(
πα′Xij/2

)
Example:

mα′
4 = 1

tan(πα′X13) + 1
tan(πα′X24) → − tan

(
πα′X13/2

)
− tan

(
πα′X24/2

)
As α′ → 0 we recover ANLSM

4 = −X13 −X24
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Pions and Mixed Amplitudes
Geometrically: this isolates an infinite subgrid of associahedra



Pions and Mixed Amplitudes

Field theory amplitude in α′ → 0:

This is the same as the δ-shift if we equate δ = 1/α′!
Other subgrids give amplitudes inaccessible by δ-shift
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Off-Diagonal Amplitudes

So far: stringy Tr
(
ϕ3)← Diagonal mα′(I|I)

How about stringy mα′(α|β)?
They can be written as some mα′

n s times products of 1/ sin(πα′Xij). Example:

mα′(I|13245) = 1
sin(πα′X13)

( 1
tan(πα′X14) + 1

tan(πα′X35)

)
Geometry for 1/ sin(πα′Xij) =⇒ Geometry for all off-diagonal amplitudes
Canonical form:

d log tan
(
πα′Xij/2

)
= dXij

sin(πα′Xij)
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Off-Diagonal Amplitudes
Playing the same game as before: we again find infinitely many line segments!

For mα′(I|13245):

Treated on the same footing as stringy Tr
(
ϕ3)
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Summary

• “Stringy bi-adjoint ϕ3 amplitudes” mα′
n (α|β)

— Central in KLT double copy
— Natural stringification of the well-studied Tr

(
ϕ3)

• Geometric description in terms of the Associahedral grid
• Geometry contains all NLSM and mixed π/ϕ amplitudes
• Positive geometry containing stringy features, beyond rational functions



Q&A
Thank you for listening!



Bonus Slides

mα′
5 =

( 1
tan(πα′X13) + 1

tan(πα′X24)

)( 1
tan(πα′X14) + 1

tan(πα′(X25 −X24))

)
+
( 1

tan(πα′X13) + 1
tan(πα′X25)

)( 1
tan(πα′X35) + 1

tan(πα′(X24 −X25))

)



Bonus Slides

The ’spurious boundaries’ give all the correct contact terms:

1
tan(πα′(Xa −Xb))

= 1 + tan(πα′Xa) tan(πα′Xb)
tan(πα′Xa)− tan(πα′Xb)

Which leads to the correct

mα′
5 = 1 + 1

tan(πα′X13) tan(πα′X14) + 1
tan(πα′X14) tan(πα′X24)

+ 1
tan(πα′X24) tan(πα′X25) + 1

tan(πα′X25) tan(πα′X35) + 1
tan(πα′X13) tan(πα′X35)


